#### ISOM3390 Business Programming in R – Winter 2021

Instructor: Dr. JIA, Jia (Justin)

Contact: justinjia@ust.hk

Office Hours: By appointment

**TA:** Mr. YEUNG, Chi Shing (Samuel) Contact: <u>imsyeung@ust.hk</u> Office: LSK 4016A Office Hours: By appointment

#### Class Schedule (refer to the detail in section 9 and 10)

#### Lecture

| Date        |                    | Time                                     | Zoom ID       |
|-------------|--------------------|------------------------------------------|---------------|
| Jan. 4-25:  | Morning session:   | 10:00 - 11:50                            | 939 6428 5109 |
| Mon. & Wed. | Afternoon session: | 13:00 – 14:50 (13:00 – 13:50 on Jan. 25) | 986 3077 5311 |
| & Fri.      |                    |                                          |               |

| Date        | Time                                     | Zoom ID       |
|-------------|------------------------------------------|---------------|
| Jan. 4-25:  | 15:00 – 15:50 (14:00 – 14:50 on Jan. 25) | 924 7914 3316 |
| Mon. & Wed. |                                          |               |
| & Fri.      |                                          |               |

\* You are highly recommended to join the class via Canvas  $\rightarrow$  Zoom Meeting tab.

**Course Website:** <u>https://canvas.ust.hk</u>. All course materials and announcements will be posted on this site. You are advised to check it regularly throughout the course.

Lab

### 1. Course Overview

In the era of Internet of Things (IoT) and big data, in order to fuel their decision making, firms need to analyze massive amounts of data for idiosyncratic problems in more efficient ways. Business applications and analytics relying only on basic spreadsheets and prepacked software tools are no longer adequate, and implementing sophisticated algorithms with custom programs starts to prevail. In addition, businesses are spending more time capturing data from various sources and curating the data before applying advanced analytic techniques. As such, mastering a programming language that helps in accomplishing all these tasks is crucial for students aiming for data applications or business analytics jobs.

With its extensive data visualization capabilities and continuously growing libraries, R is widely considered the broadest analytical platform in the field of business analytics. This course can prepare you with R programming skills for putting analytics and modeling techniques into use by working with cases of emerging business applications, including data visualization, Web scraping, text analytics, social network analysis, etc.

# 2. Course Goals and Objectives

At the end of this course, students will be able to:

- Understand generic programming language concepts in R
- Know how to obtain data from a variety of sources and tidy data for downstream analysis tasks with R
- Understand the basic principles of constructing data graphics and be familiarized with the plotting systems and visualization features in R
- Understand how to write R scripts and use various R packages for business applications
- Use R Markdown to write reports that includes R code and the code's automaticallygenerated output

# 3. Prerequisites

This course is *not* an introductory programming course and has formal prerequisites: ISOM3230 and ISOM3360. An understanding of essential programming concepts (data types and structures, control flow, functions, etc.) is a necessity to this course.

# 4. Teaching Approach

In this course, we will adopt the <u>flipped-classroom strategy</u> that engages students in an active learning experience. It proves to be a better approach to move students from novice to skilled

programmers than the traditional instructional one. The flipped classroom allows students to work on course content at their own pace and can provide individualized learning experience. So, it is well-suited for a course with students from various programming backgrounds. Besides, it also provides students with opportunities to develop essential workplace skills such as critical thinking, written and oral communications, teamwork, and lifelong learning.

In this course, students are required to watch online lectures on designated topics in the morning session of every class day. Lecture videos scheduled for a class day will be released **one day earlier** so that you have the flexibility to pace your learning around what best suits you. During watching a video, you are highly encouraged to pause it from time to time to try out R commands in RStudio.

The afternoon sessions are primarily reserved for in-class exercises. In-class exercises are designed to assess students' understanding of concepts learned from video lessons and create opportunities for you to apply them into practice to solve business problems. They also provide a venue for students to explore specific topics in greater depth and serve milestones to conclude learning outcomes on a daily basis.

As specific individual feedback is critical for making programming practice meaningful, the instructor will spend the time working with students in afternoon sessions via Zoom meeting. Participating in live meetings is *not mandatory*. Student can call in whenever you are in need of more explanations and clarifications on lecture contents or run into problems during working on in-class exercises.

# 5. Textbook and Supplemental Readings

There are no specific textbooks required for this course. But you can easily find many useful resources online, for example, online books <u>*Hands-on Programming with R*</u> and <u>*R for Data Science*</u>.

Other reference books on R programming includes:

- <u>The R Cookbook</u>, by Paul Teetor
- <u>The R Graphics Cookbook</u>, by Winston Chang
- The Art of R Programming: A Tour of Statistical Software Design, by Norman Matloff
- Data Manipulation with R, by Phil Spector
- *Software for Data Analysis: Programming with R*, by John Chambers (advanced book)

#### 6. Assessment Scheme

An inevitable part of this end of any university course is the evaluation, and the grade. Actually, in any course, the most important evaluation is a student's self-evaluation, e.g., how many new

and useful ideas and skills did you learn from the course? Has the course changed your view about yourself, work groups and organizations? If so, student efforts here will have paid off.

The goals of this course will be assessed in the following manner, and the percentage of grade may be broken down as follows:

| Components                | Percentage of the grade |
|---------------------------|-------------------------|
| A. In-class Exercises (9) | 30%                     |
| B. Assignments (2)        | 30%                     |
| C. Final Exam             | 40%                     |

### 1) In-class Exercises and Homework Assignments

There will be a total of **9** in-class exercises and **2** *individual* assignments, each possibly comprising conceptual questions to be answered and hands-on tasks.

Each in-class exercise is to be submitted by 11:59 pm on the same date it is given. The due date of each assignment will be announced upon its release on Canvas.

#### **Rubrics**

- Correctness: Deductions resulting from mistakes will be made at the discretion of the grader.
- Knitting: -5% deduction if the Rmd file you submit does not knit correctly (i.e., if there are errors and no HTML file is produced when the grader attempts to knit your Rmd file.) If your Rmd file fails to knit, you will be contacted by the grader and will be given 24 hours to resubmit your work. You will need to trace the source of the error(s) and correct it.
- Style: Coding style is important. You will receive a deduction of up to 10% if you do not adhere to good coding style. Your code is considered to have a good coding style if:
  - good, consistent coding style
  - appropriate use of variables
  - appropriate use of functions
  - good commenting
  - good choice of variable names
  - appropriate use of inline code chunks

# Late policy

Turn in your work early if there is any uncertainty about your ability to turn it in at the due time.

Submissions up to 24 hours late will have their grade reduced by 25%; those up to 48 hours late will have their grade reduced by 50%. They will not be accepted for credit after two days.

### Honor-code policy

The basic presumption is that the work you submit is your own. Every line of text and line of code that you submit must be written by you personally.

However, occasionally, it may be necessary to ask someone for help. You are permitted to do so, provided you meet the following two conditions:

- 1. You acknowledge any help received on the work you hand in. That is, you must include a comment in your homework submission that clearly states the name of the student, book, or online reference from which you received assistance.
- 2. You *understand* the work that you hand in, so that you could explain the reasoning behind the parts of the work on which you received assistance from others.

We shall not deduct credit for small amounts of acknowledged assistance. Even working as a team on one of several problems in a problem set may not hurt your grade, as long as all members of the group acknowledge their collaboration. Such shared interest can be beneficial to all concerned. Nevertheless, we *do reserve the right* to give less than full credit in circumstances where it appears that there has been *large-scale division of labor*, and you are not getting as much learning out of the in-class exercise or assignment as you should.

Submissions that fail to properly acknowledge help from other students or non-class sources will receive no credit. Copied work will receive no credit. Any and all violations will be reported to the University administration.

Moreover, all students are expected to comply with the HKUST policy on academic integrity. This policy can be found online at <u>http://ugadmin.ust.hk/integrity/student-1.html</u>.

If you have any questions about what this policy means, please discuss the matter with the instructor.

#### 2) Final Exam

An online proctored exam (open note) will be administered **on Jan. 27**. It will cover all lecture materials, together with other materials used in this course. Details will be announced later.

### 7. Labs

During the lab sessions, students will get hands-on practices with lecture concepts by working on assigned lab activities. Although lab participation will not count towards the final grade, students are highly encouraged to make good use of lab hours to solve your puzzles and hone your programming skills.

Lab sessions will be delivered via two channels simultaneously, namely *pre-recorded* lab videos and *live* Zoom meetings at scheduled times. Various activities and tasks (such as modifying code from the lecture and completing short coding exercises) will be introduced in lab videos and students are encouraged to try them out. For any questions regarding the labs, students are welcome to call in during the scheduled lab hours, members of the teaching staff will be present in Zoom to answer them.

There will be 10 labs in total. Students may refer to section 10 for detail.

### 8. Software

- On-Premises:
  - RStudio: download and install from <u>https://rstudio.com/products/rstudio/download/</u> or install from within Anaconda

#### • Cloud:

- o <u>RStudio Cloud</u>
- o <u>Google Colaboratory</u>

# 9. Tentative Lecture Schedule

The following table shows the planned list of topics that we plan to cover. Please note that this schedule is tentative and is subject to adjust as the term progresses.

| Date   | Morning Session                                                                                                                                                                               | Afternoon Session                                                                                                   | Assignment<br>Due/Remark     |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------|
| 4-Jan  | <ul> <li>Unit 1: Course Introduction</li> <li>Introduction to R and data science</li> <li>Overview of planned topics</li> <li>Course mechanics</li> <li>RStudio</li> <li>RMarkdown</li> </ul> | Unit 2: Data Structures<br>• R basics<br>• Vectors and factors<br>• In-class exercise 1                             |                              |
| 6-Jan  | Unit 2: Data Structures<br>• Matrices and arrays<br>• Lists                                                                                                                                   | Unit 2: Data Structures<br>• Data frames<br>• In-class exercise 2                                                   | Add/Drop<br>deadline         |
| 8-Jan  | Unit 3: Control Structures<br>• Conditionals<br>• Loops                                                                                                                                       | Unit 4: Functions <ul> <li>Writing and calling functions</li> <li>In-class exercise 3</li> </ul>                    |                              |
| 11-Jan | Unit 4: Functions <ul> <li>Environments and scoping rules</li> </ul>                                                                                                                          | Unit 5: Loop Functions<br>• The apply family<br>• In-class exercise 4                                               | Asg. 1 Release               |
| 13-Jan | <ul> <li>Unit 5: Loop functions</li> <li>The split/apply/combine pattern for data analysis</li> <li>Unit 6: Data Wrangling</li> <li>Tidy data, tidyverse, and tibbles</li> </ul>              | Unit 6: Data Wrangling<br>• tidyr for data tidying<br>• In-class exercise 5                                         |                              |
| 15-Jan | <ul> <li>Unit 6: Data Wrangling</li> <li>dplyr for data manipulation</li> <li>Unit 7: Base Plotting</li> <li>The generic plotting function</li> <li>The painter model</li> </ul>              | <ul> <li>Unit 7: Base Plotting</li> <li>Other high-level plotting functions</li> <li>In-class exercise 6</li> </ul> |                              |
| 18-Jan | <ul> <li>Unit 8: ggplot2 Plotting System</li> <li>Grammar of graphics</li> <li>Data, geoms, and aesthetic mapping</li> </ul>                                                                  | Unit 8: ggplot2 Plotting System<br>• Other grammatical elements<br>• In-class exercise 7                            | Asg. 1 Due<br>Asg. 2 Release |

| 20-Jan | Unit 9: String Operations<br>• stringr for string operations<br>• Regular expressions                        | Unit 9: String Operations<br>• Working with tidyr and dplyr<br>• In-class exercise 8        |            |
|--------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------|
| 22-Jan | <ul><li>Unit 10: Web Scraping</li><li>HTML and CSS basics</li><li>rvest for extracting tagged data</li></ul> | Unit 10: Web Scraping <ul> <li>Dynamic web scraping</li> <li>In-class exercise 9</li> </ul> |            |
| 25-Jan | Unit 11: Text Analytics<br>• Text analytics with tidy text<br>format<br>• Sentiment analysis                 | Unit 11: Text Analytics<br>• Tokenizing and n-grams<br>• Course conclusion                  | Asg. 2 Due |

# 10. Tentative Lab Schedule

| Lab | Date   | Lab Topic                                                        |
|-----|--------|------------------------------------------------------------------|
| 1   | 4-Jan  | R markdown, data type, operators, vectors, and factors           |
| 2   | 6-Jan  | Exploring data frames                                            |
| 3   | 8-Jan  | Using control structures; Writing and calling functions          |
| 4   | 11-Jan | Practicing advanced looping and split-apply-combine manipulation |
| 5   | 13-Jan | Data Wrangling with dplyr and tidyr I                            |
| 6   | 15-Jan | Data Wrangling with dplyr and tidyr II                           |
| 7   | 18-Jan | Plotting with R base graphics system, ggplot2                    |
| 8   | 20-Jan | Splitting and querying with regexes                              |
| 9   | 22-Jan | Web scraping                                                     |
| 10  | 25-Jan | Text analytics and sentimental analysis                          |