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Abstract Many chemical, food and pharmaceutical products are perishable and
effective management of their inventory is important to customer service, the bottom
line, and the environment. This chapter provides a review of recent literature on
perishable inventory systems. The chapter covers models with one class of demand
and one location, multiple classes of demand and one location, as well as one class
of demand and multiple locations. The focus of the review is on structural properties
of the optimal policies and intuitive heuristic policies. The chapter concludes with a
discussion on empirical studies and several ideas for future research.

1 Introduction

Perishable inventory management is one of the most researched areas in Operations
Management/Operations Research. There have been at least four reviews of the
literature: Prastacos (1982), Nahmias (1982), Karaesmen et al. (2011) and Nahmias
(2011). The review by Prastacos (1982) focuses on blood products, and the other three
are more general. Since the last two reviews in 2011, the area has been experiencing a
resurgence of interest. In this review, we focus on recent results that are not discussed
in the earlier reviews.

In our view, there are three reasons for the renewed interest in this research area.
First, driven by market development, there has been much interest in e-commerce,
health care operations and sustainable operations (in particular waste reduction),
and many problems in these areas are related to perishable inventory systems. Sec-
ond, although perishable inventory systems are known to be difficult to analyze,
this research area has received a boost from the successful application of tools such
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as multimodularity and L!-convexity in large-scale dynamic programs. Third, per-
ishable inventory systems, which are typically computationally challenging, have
proved to be great test beds for new ideas in algorithm design, another area that has
been experiencing increased research recently.

In this chapter, we focus on research on the structure of optimal inventory de-
cisions. Research on perishable inventory management with pricing decisions is
reviewed in Chapter 14 (e.g., Chen et al. 2014, Hu et al. 2016). Research on ap-
proximation and learning algorithms for perishable inventory systems is reviewed in
Chapters 12, 15 and 16 (e.g., Chao et al. 2015, Chao et al. 2018). The remainder of
this review is organized as follows. Section 2 reviews the results for joint replenish-
ment and clearance sales when there is only one class of demand and inventories are
depleted either on a first-in-first-out (FIFO) basis or last-in-first-out (LIFO) basis.
Section 3 discusses how the results under the FIFO rule can be generalized to allow
multiple classes of demand. Section 4 reviews the results on perishable inventory
systems that involve multiple locations. Section 5 reviews models with endogenous
product lifetimes. Section 6 discusses the results in empirical research. The review
concludes with a discussion of potential future research directions in Section 7.

2 Models with One Class of Demand and Location

Consider a firm that sells perishable products with an n-period lifetime. The firm
purchases products at unit cost c. The products can be sold either at a regular price,
r , or a clearance sale price, s. With a regular price, the demand in a period is
random. Let D represent the regular demand. Unmet demand is lost. Demand under
the clearance sales price scenario is abundant, and thus a firm can control how many
items it sells for a given price. Without loss of generality, it is assumed that items
have zero value once they expire. Items that expire incur outdating cost θ per unit and
are removed from the shelf and disposed of. Items that are carried over to the next
period incur holding cost h per unit. Profits received in future periods are discounted
by discount factor α. Clearance sales are a common strategy to reduce a mismatch
between supply and demand for perishable goods. To effectively use clearance sales
to reduce a mismatch, it is important that retailers choose the right timing and sales
depth and coordinate such sales with replenishment decisions.

Depending on the sequence by which items in different age groups are used to
fulfill the regular demand, the analysis of these models requires different analytical
tools and leads to different optimal replenishment and clearance sale policies.

Li and Yu (2014) study a problem in which a firm controls inventory issuance. This
problem is particularly relevant to blood banks and e-commerce platforms that sell
grocery products. The problem’s sequence of events is as follows. At the beginning
of each period, the firm’s initial state is y = (y1, y2, ..., yn−1), which represents the
inventory level after regular demand is fulfilled but before any clearance sales. Here,
yi represents inventory with a remaining lifetime of i periods. The firm must decide
on an order quantity q of new items and the amount of inventory that will be carried
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over to the next period, denoted by z = (z1, z2, ..., zn−1). Then, after regular demand
is realized, the firm decides on an issuing policy to meet the demand. At the end of
each period, the items that expired in that period are removed and disposed of. Let di
denote the amount of regular demand that is met by the inventories with a remaining
lifetime of i periods. Let d = (d1, d2, ..., dn) and O(D) = {d :

!n
i=1 di ≤ D, 0 ≤ dn ≤

q, 0 ≤ di ≤ zi for 1 ≤ i ≤ n − 1}.
The dynamic programming formulation is as follows:

πt (y) = s
n−1"
i=1

yi + max
0≤z≤y,q≥0

ut (z, q),

where

ut (z, q) = −(s + h)
n−1"
i=1

zi − αcq + αE max
d∈O(D)

#
r

n"
i=1

di − θ(z1 − d1)

+πt+1(z2 − d2, ..., zn−1 − dn−1, q − dn)
$
,

and πT+1(y) = s
!n−1

i=1 yi . In the formulation above, s
!n−1

i=1 (yi − zi) represents the
revenue from clearance sales. Since

!n−1
i=1 zi units of inventory are carried over to the

next period, they incur total holding cost of h
!n−1

i=1 zi . Given the demand fulfillment
vector d, the revenue from regular sales is r

!n
i=1 di , the amount of inventory that

will be outdated is equal to z1 − d1, and the initial state in the next period is
(z2 − d2, ..., zn−1 − dn−1, q − dn). Let (z∗t , q∗

t ) denote the optimal solution.
This problem is unique in two ways. First, it has a multidimensional state space.

Second, the state and decision variables are economic substitutes. The standard
approach used to prove the preservation of structural properties in dynamic programs
can not be applied directly to substitutes. Li and Yu (2014) use the concept of
multimodularity to establish the structural properties for this problem, as follows.

An n-dimensional set X ⊆ Rn is called a multimodular set if there exist ai ∈
Rn and bi ∈ R such that X = {x ∈ Rn |ai · x ≥ bi, i = 1, 2, ..,m} and ai has
the form (0, ..., 0, 1, ..., 1, 0, ..., 0); that is, the nonzero components of ai are either
consecutive 1s or consecutive -1s. Let x = (x1, ..., xn). An n-dimensional function
f (x) defined on a multimodular set X ⊆ Rn is multimodular (anti-multimodular) if
f (x1 − z, x2 − x1, ..., xn − xn−1) is submodular (supermodular) in (x, z).

Anti-multimodularity implies decreasing difference, and it thus can be used to
analyze models with substitutable variables. Anti-multimodular functions have some
useful properties. A continuous anti-multimodular function is jointly concave. If g(x)
is a one-dimensional concave function, then f (x) = g(x1 + x2 + ... + xn) is anti-
multimodular in x. The sum of anti-multimodular functions is still anti-multimodular;
that is, if f (x) and g(x) are anti-multimodular, then f (x)+g(x) is anti-multimodular,
and if f (x, d) is anti-multimodular in x for any given d and D is a random variable,
then E f (x,D) is anti-multimodular in x.
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Anti-multimodularity is preserved under maximization and the maximizer of an
anti-multimodular function has monotonicity properties with bounded sensitivity.
This property makes anti-multimodularity a useful tool for identifying structural
properties in dynamic programs. To be more specific, if f (x, y) is an n+1 dimensional
anti-multimodular function and {(x, y)|x ∈ X, y ∈ Y (x)} is a multimodular set, then

g(x) = max
y∈Y(x)

f (x, y)

is anti-multimodular in x. The optimal solution, denoted by ȳ(x), satisfies the fol-
lowing inequalities:

−1 ≤ ∆xn ȳ ≤ ∆xn−1 ȳ ≤ ... ≤ ∆x1 ȳ ≤ 0.

Throughout the remainder of the chapter, the notation ∆xi J(x) is used to represent
(J(x + δei) − J(x))/δ, where ei is a vector with 1 in its ith component and 0 in all
the other components and δ is a small positive number. When J(x) is differentiable,
then ∆xi J(x) means that ∂J(x)/∂xi .

Multimodularity is closely related to L!-convexity, a stronger notion of com-
plementarity than submodularity (Lu and Song 2005, Zipkin 2008). Multimodular
functions and L!-convex functions are related through unimodular coordinate trans-
formations. For the models in which the state and decision variables are economic
substitutes, to use L!-convexity to show structural properties, one must first transform
the original variables into complementary variables, then show structural properties
with respect to the new variables through showing L!-convexity, and finally trans-
form the properties back to those with respect to the original variables. In spite of
their mathematical equivalence, they represent two conceptually different paths to
the same destination. Whereas one tackles the problems directly, the other takes a
detour by transforming them into problems of complementarity.

Using multimodularity, Li and Yu (2014) show that the optimal inventory issuing
rule is FIFO, and that both the maximal profit function, πt , and the objective function,
ut , are anti-multimodular. Note that without the option of clearance sales (e.g., Fries
1975, Nandakumar and Morton 1993), FIFO may not be the optimal issuing rule and
multimodularity may not hold. For a given inventory of a certain age, the optimal
policy on clearance sales has a clear-down-to structure; that is, there is a clear-down-
to level such that a clearance sale will take place if and only if the inventory level is
above the clear-down-to level and the clearance sale always reduces the inventory to
that level. The details are summarized in Theorem 1 below.

Theorem 1

(i). The functions ut (z, q) and πt (y) are anti-multimodular.
(ii). The optimal policy for clearance sales is characterized by z̄t,i , where z̄t,i is a
decreasing function of yi+1,yi+2,...,yn−1 and is independent of y1, y2, ..., yi . The
optimal policy is:

z∗t,i(y) =
#
yi if yi ≤ z̄t,i;
z̄t,i if yi > z̄t,i .
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In addition, the following inequalities hold:

−1 ≤ ∆yi+1 z̄t,i ≤ ∆yi+2 z̄t,i ≤ ... ≤ ∆yn−1 z̄t,i ≤ 0.

(iii). The optimal replenishment quantity q∗
t (y) is a decreasing function of

y1, y2, ..., yn−1, and the following inequalities hold:

−1 ≤ ∆yn−1 q∗
t ≤ ∆yn−2 q∗

t ≤ ... ≤ ∆y1 q∗
t ≤ 0.

The quantities z̄t,i are state-dependent thresholds, and they depend only on in-
ventories that are newer than i. Specifically, the more inventories with a remaining
lifetime longer than i, the less inventory with an i-period remaining lifetime should
be carried to the next period. In addition, the thresholds z̄t,i are more sensitive to
the inventories with a remaining lifetime closer to i. Similarly, the inequalities about
the optimal order quantity confirm that the order quantity is more sensitive to newer
inventory than to older inventory.

This model is extended by Liu et al. (2019) to allow for two perishable products
with a dependent supply. Their research is based on the case of a blood center that
periodically collects whole blood and processes it into multiple blood products such
as red blood cells and platelets. They similarly characterize the optimal clearance
sale and replenishment policies by showing the multimodularity of the objective
function.

While both Li and Yu (2014) and Liu et al. (2019) assume that firms control
how inventory is depleted and hence that the FIFO issuing rule is optimal, Li et al.
(2016) study a problem in which consumers control inventory depletion and hence
the LIFO rule is appropriate. In offline retailing, consumers observe expiration dates
and decide which items to pick. Therefore, fresher items typically sell first on a LIFO
basis. The problem is challenging not only because the state space is large but also
because inventory systems under LIFO are known to lack the common technical
properties such as concavity needed for analysis, let along stronger properties such
as multimodularity.

The sequence of the events is the same as that in the previous models. As the regu-
lar demand is fulfilled using the LIFO rule, given an initial state y = (y1, y2, ..., yn−1),
the state transition becomes Y(q, z,D) = (Y1,Y2, ...,Yn−1), where for 1 ≤ i ≤ n − 2

Yi(q, z,D) = (zi+1 − (D − q −
n−1"
k=i+2

zk)+)+

and

Yn−1(q, z,D) = (q − D)+.

Here, the notation x+ = max{x, 0}. The quantity of outdated inventory is

S(q, z,D) = (z1 − (D − q −
n−1"
i=2

zi)+)+.
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The dynamic programming formulation is as follows:

πt (y) = s
n−1"
i=1

yi + max
0≤z≤y,q≥0

ut (z, q),

where

ut (z, q) = −(s + h)
n−1"
i=1

zi − αcq + αE
#

r min(q +
n−1"
i=1

zi,D) − θS(q, z,D)

+πt+1(Y(q, z,D))
$
.

The optimal clearance sale policies are shown in Figure 1. Under the LIFO rule,
there are two thresholds for each age group of inventory: a lower and an upper
threshold. For an age group with a remaining lifetime of two periods or more, if its
inventory level is below the lower threshold, then there is no clearance sale; if it is
above the upper threshold, then it will be cleared down to the upper threshold.

The optimal policy for the age group with a remaining lifetime of one period is
very different, however. Clearance sales may take place if its inventory level is above
the upper threshold or below the lower threshold. The lower the initial inventory level,
the more new supply is needed to meet demand in the current period. However, the
more new supply there is, the less likely it is that the oldest items will be used to
meet demand because customers always select the newest items first. The retailer is
therefore better off clearing the small number of oldest items to recoup some revenue
and avoid outdating. The practice of avoiding having the newest and the oldest items
in the system at the same time through clearance sales is unique to the inventory
systems under LIFO.

Fig. 1 Optimal clearance sale policies for inventory with different remaining lifetimes under LIFO

To implement the model in practice requires solving a dynamic program with a
multi-dimensional state space and a non-concave objective function, which is chal-
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lenging. Motivated by the structural properties of the optimal policy, Li et al. (2016)
consider two myopic heuristics. For both heuristics, the value-to-go function is ap-
proximated by πt+1(y) = s+αc−h

2
!n−1

i=1 yi because the marginal values of inventories
are bounded between s and αc − h. In the first heuristic, in computing the order
quantity and clearance sale quantity, all inventories on hand are treated as if they
would expire in one period. Let y =

!n−1
i=1 yi . The heuristic policies are then derived

from the following one-period problem:

max
0≤z≤y,q≥0

−(s + h)z − αcq + αE[ r min(q + z,D) − θ(z − (D − q)+)+

+
s + αc − h

2
(q − D)+].

In the second heuristic, in addition to the total inventory level y, information
about y1, which is the inventory level of items with a one-period lifetime remaining,
is also needed. The heuristic policies are obtained by solving the following:

max
z1,z,q

−(s + h)(z1 + z) − αcq + αE[ r min(q + z1 + z,D) − θ(z1 − (D − q − z)+)+

+
s + αc − h

2
(q + z − D)+],

subject to the constraints: 0 ≤ z1 ≤ y1, 0 ≤ z ≤ y − y1, q ≥ 0.
In numerical experiments, the first heuristic may generate as much as 7% less ex-

pected profit than the optimal policy. The second heuristic significantly outperforms
the first heuristic, and its profit is consistently very close to the optimal profit.

The analysis in Li et al. (2016) demonstrates that inventory with a one-period
remaining lifetime (i.e., the oldest inventory) plays a qualitatively different role than
inventories of other age groups. First, the optimal order quantity is monotonic in the
oldest inventory, but it is not necessarily so in other inventories. Second, the optimal
policy on clearance sales with respect to the oldest inventory is to clear all, to not
clear, and then to clear down to a certain level when the inventory level increases.
The optimal policies with respect to other inventories, however, are different. In
particular, clearance sales won’t happen when inventories are low enough.

Finally, it is critically important to keep a record of the oldest inventory, and the
performance of myopic heuristics that take advantage of that record are consistently
close to that of the optimal policy. The value of keeping a record of other inventories,
however, is insignificant. There is no age information in the bar codes currently
used in retailing. In practice, retailers typically check and remove the expired items
manually. Putting items on clearance sales is also done manually. The information
about the oldest inventory can be obtained during these manual processes, and the
additional effort may not be significant. If this is done, then the second heuristic
above can be implemented without the need to include the full age information in
bar codes.
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3 Multiple Classes of Demand

Firms managing perishable inventory systems usually face multiple classes of cus-
tomers that differ in their requirements for product freshness. For example, in health
care, patients with different diseases may require platelets of different ages. In gro-
cery retailing, some customers may be more sensitive to product freshness than
others. In these settings, in addition to the coordination of clearance sales and re-
plenishment decisions discussed earlier, firms also need to determine the optimal
allocation of perishable inventory to different classes of customers.

Abouee-Mehrizi et al. (2019) study the problem assuming that unmet demand is
back-ordered and that there is a positive lead time for replenishment. Let L denote
the lead time. A firm sells a perishable product with a lifetime of n + L periods.
Thus, the product has a remaining lifetime of n periods when the firm receives it.
Without loss of generality, assume that there are n classes of customers indexed by
k = 1, ..., n, where class k customers only accept products with a remaining lifetime
longer than or equal to k. Let Dk denote the class k demand. Let D = (D1, ...,Dn).
Let bk denote the per unit back-order penalty cost for class k demand. Assume that
bn ≥ bn−1 ≥ ... ≥ b1 > 0; that is, class i has a higher priority than class j if i > j.

The sequence of events is the same as that in the models reviewed in Section
2. Here, the initial state is y = (yo, yp), where yo = (y1, y2, ..., yn) and yp =

(yn+1, yn+2, ..., yn+L−1). The variable yi represents the inventory position for on-
hand items with a remaining lifetime of i periods for 1 ≤ i ≤ n; and yn+i represents
the pipeline inventory that will arrive in i periods for 1 ≤ i ≤ L−1. The variable q is
still used to represent the order quantity and z = (z1, z2, ..., zn) to denote the amount
of on-hand inventory that is carried over to the next period. If yi ≥ 0, then yi − zi
denotes items with a remaining lifetime of i periods that are sold at clearance sales.
If yi < 0, that is, if there is unmet back-ordered demand, zi must be equal to yi .

Let dk
j denote the amount of the class k demand that is met by using in-

ventories with a remaining lifetime of j periods. Let dk = (dk
1 , d

k
2 , ..., d

k
n ) and

d = (d1, d2, ..., dn). Denote O(D, z) = {d :
!n

j=k dk
j ≤ Dk − (zk)−,

!n
k=j dk

j ≤
(zj)+, dk

j ≥ 0 for 1 ≤ j, k ≤ n}. Here, x+ = max{x, 0} and x− = min{x, 0}. Let r , s,
c, h and θ denote the regular price, clearance price, unit purchasing cost, unit holding
cost and outdating cost, respectively. The dynamic programming formulation is as
follows:

πt (y) = s
n"
i=1

yi + max
(yo )−≤z≤yo

q≥0

ut (z, yp, q),

where
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ut (z, yp, q) = −s
n"
i=1

zi − h(
n"
i=1

zi)+ − αcq

+αE max
d∈O(D,z)

#
r(

n"
k=1

n"
j=1

dk
j ) −

n"
k=1

bk(Dk − (zk)− −
n"
j=k

dk
j )+

−θ(z1 − d1
1 )
+ + πt+1(z2 −

2"
k=1

dk
2 , ..., zn −

n"
k=1

dk
n, yp, q)

$
,

and the terminal condition is πT+L+1(y) = 0.
It can be proved that the value function πt (y) and the objective function ut (z, yp, q)

are both anti-multimodular. The optimal clearance sales strategy follows a clear-
down-to structure and the structural properties in Theorem 1 continue to hold in the
presence of multiple classes of customers.

The optimal allocation policy is a sequential rationing policy. The demand with
the highest priority is first satisfied, then the demand with the second-highest priority,
and so on. In fulfilling each demand class, it is optimal to reserve fresher inventories
at certain thresholds to meet future demand with a higher priority and use the
remainder to fulfill the demand of that class as much as possible following the FIFO
rule. The rationing threshold of inventory with a remaining lifetime i when fulfilling
class k demand depends on the inventory levels both of products with a remaining
lifetime longer than i and products with a remaining lifetime shorter than k. Anti-
multimodularity also implies that these thresholds have bounded sensitivities with
respect to the state variables.

Finally, through numerical studies, Abouee-Mehrizi et al. (2019) compare three
strategies a firm can use to improve the management of perishables: decreasing the
lead time, increasing the lifetime of products, and increasing customers’ willingness
to accept older products. They show that, among these three strategies, decreasing
lead time is the most efficient, with a potential cost benefit of 20% in the numer-
ical examples. Increasing the lifetime is more efficient than increasing customers’
willingness to accept older products.

Chen et al. (2019a) study a similar problem but under the assumption that the
unmet demand is lost and the replenishment lead time is zero. Dk is again used
to represent the demand from class k customers who only accept products with a
remaining lifetime of at least k periods. Let pi denote the per unit lost-sales penalty
cost for class i demand. Assume that pn ≥ pn−1 ≥ ... ≥ p1 > 0; that is, class i has a
higher priority than class j if i > j.

The sequence of events and notation for the state and decision variables are the
same as those in Li and Yu (2014). In what follows, q and zn are used interchangeably.
Let dk

j denote the amount of the class k demand that is met by using inventories with
a remaining lifetime of j periods. Let dk = (dk

1 , d
k
2 , ..., d

k
n ) and d = (d1, d2, ..., dn).

Denote O(D) = {d :
!n

j=k dk
j ≤ Dk,

!n
k=j dk

j ≤ zj, dk
j ≥ 0 for 1 ≤ j, k ≤ n}. Let

r , s, c, h and θ denote the regular price, clearance price, unit purchasing cost, unit
holding cost and outdating cost, respectively. The dynamic programming formulation
is as follows:
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πt (y) = s
n−1"
i=1

yi + max
0≤z≤y
q≥0

ut (z, q),

where

ut (z, q) = −(s + h)
n−1"
i=1

zi − αcq + αE max
d∈O(D)

#
r(

n"
k=1

n"
j=1

dk
j ) − θ(z1 − d1

1 )
+

−
n"

k=1
pk(Dk −

n"
j=k

dk
j )+ + πt+1(z2 −

2"
k=1

dk
2 , ..., zn −

n"
k=1

dk
n )
$
,

and the terminal condition is πT+1(y) = 0.
Chen et al. (2019a) prove that Theorem 1 still holds in this model. That is, the value

function πt (y) and the objective function ut (z, yp, q) are both anti-multimodular; the
optimal strategy on clearance sales follows a clear-down-to structure and the optimal
order quantity is decreasing with inventory level and is more sensitive to changes
in newer inventory. The optimal allocation policy is simpler than that in Abouee-
Mehrizi et al. (2019) due to the assumption of zero lead time. In particular, demand
with a higher priority should be satisfied as much as possible and on a FIFO basis
before demand with a lower priority.

Based on the structural properties of the optimal value function, Chen et al.
(2019a) then develop an adaptive approximation approach to overcome the curse of
dimensionality in solving the dynamic program. The essential idea is to approximate
the value function by a linear combination of a one-dimensional function Bj(x), i.e.,
letting the approximate value function be π̂t+1(y) =

!n−1
j=1 ηt+1, jBt+1,n−1(

!n−1
l=j yl).

Here, for each j ∈ {1, 2, ..., n− 1}, Bt, j(y) can be recursively solved by the following
one-dimensional dynamic program:

Bt, j(y) = sy + max
0≤z≤ye j

q≥0

ut (z, q),

where

ut (z, q) = −(s + h)
n−1"
i=1

zi − αcq + αE max
d∈O(D)

#
r(

n"
k=1

n"
j=1

dk
j ) − θ(z1 − d1

1 )
+

−
n"

k=1
pk(Dk −

n"
j=k

dk
j )+ + π̂t+1(z2 −

2"
k=1

dk
2 , ..., zn −

n"
k=1

dk
n )
$
.

The weights ηt+1, j for j ∈ {1, 2, ..., n − 1} are calculated based on the relationship
between the marginal values of Bt, j and Bt,n−1. Constructed in this way, π̂t (y) retains
the anti-multimodularity of the optimal value function. Fresher inventory has a higher
marginal value under this approximate value function.
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Under this approximation scheme, the heuristic policy generated by the approx-
imate value function retains the same structural properties as the optimal policy.
Numerical studies demonstrate that the proposed approximation approach is nearly
optimal, with tan average optimality gap of 0.30%, and significantly outperforms the
other heuristics in the literature.

Chen et al. (2019b) apply some of the ideas in Chen et al. (2019a) to a setting
in which a blood center faces two classes of age-differentiated demand for platelets
from downstream hospitals. Using the tool of multimodularity, they characterize the
structure of the optimal policy for whole blood collection, platelet production and
inventory issuing, rationing and disposal. Fu et al. (2019) also study perishable in-
ventory systems with multiple classes of demand. However, as they consider product
returns and remanufacturing, their model and results are reviewed in Chapter 11.

4 Multiple Locations

Research on non-perishable inventory systems shows that transshipment can balance
inventories in different locations and hence simultaneously reduce overages at some
locations and shortages at others. This section introduces two papers that provide new
insights into the roles and value of transshipment in perishable inventory systems.

Li et al. (2021) explore the idea of transshipment in an offline retailer with a LIFO
inventory issuing rule. The retailer owns two outlets, indexed by superscript i = 1, 2.
The products they sell have an n-period lifetime. The products can be sold at either
a regular price p, or a clearance sale price s. Under a regular price, the demand at
each outlet is random and is modeled by random variable Di . The demand under
a clearance sale is sufficiently high (or s is sufficiently low) that the products on
sale will never go unsold. Assume that D1 and D2 are identically distributed but not
necessarily independent.

The sequence of events is as follows. 1) At the beginning of a period, the retailer
determines how much to order, how much should be sold in a clearance sale and how
much and what should be transshipped from one outlet to the other. 2) The random
demand for regular sales is realized and satisfied. 3) At the end of the period, the
unsold inventory with a remaining lifetime of one period expires. Assume that there
is no transshipment cost in the model.

For outlet i, the initial inventory is represented by a vector xi = (xi1, x
i
2, ..., x

i
n−1),

where xij represents the inventory with a remaining lifetime of j periods at outlet i.
Let xj = x1

j + x2
j . The system state is captured by x = (x1, x2, ..., xn−1). Let qi be the

order quantity of new items at outlet i. Let zi = (zi1, .., z
i
n−1), where zij is the inventory

with a remaining lifetime of j periods that retail outlet i has after transshipment and
clearance sales. As such, the total amount of inventory with a remaining lifetime
of j periods available for regular sale is z1

j + z2
j and the amount sold in clearance

sales is xj − z1
j − z2

j . Customers will always choose the freshest products first; that
is, inventory leaves the retail shelf on a LIFO basis. Suppose that the system state
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becomes Yi(qi, zi,Di) = (Y i
1 ,Y

i
2 , ...,Y

i
n−1) in the next period. Then, for 1 ≤ j ≤ n − 2

Y i
j (qi, zi,Di) = (zij+1 − (Di − qi −

n−1"
k=j+2

zik)
+)+

and

Y i
n−1(q

i, zi,Di) = (qi − Di)+.

The amount of outdated inventory is

S(qi, zi,Di) = (zi1 − (Di − qi −
n−1"
j=2

zij)+)+.

Let c, θ, and α be the ordering cost, outdating cost and the discounting factor,
respectively. Without loss of generality, assume that there is no holding cost. The
dynamic programming formulation is then as follows:

Jt (zi, qi) = −s
n−1"
j=1

zij − cqi + pEmin(qi +

n−1"
j=1

zij,D
i) − θES(qi, zi,Di) (1)

and

vt (x) = s
n−1"
j=1

xj +max{Jt (z1, q1) + Jt (z2, q2) + αEvt+1(
2"
i=1

Yi(qi, zi,Di))}, (2)

subject to z1
j + z2

j ≤ xj , zij ≥ 0, qi ≥ 0 for all i = 1, 2 and j = 1, 2, ..., n − 1. On
the right-hand side of (1), the second term is the purchasing cost, the third term is
the revenue from regular sales, and the last term is the outdating cost. The sum of
the first terms on the right-hand sides of (1) and (2) represents the revenue from
clearance sales. Hence Jt (zi, qi) is the one-period profit generated at outlet i. The
planning horizon is T and the terminal condition is vT+1(x) = s

!n−1
i=1 xi . The optimal

solution to (2) is denoted by (z̄ij, q̄i), j = 1, 2, ..., n − 1 and i = 1, 2.
The following theorem shows that transshipment plays two roles for perishable

inventory systems under the LIFO rule. One is inventory balancing, which is well
known in the literature. The other is inventory separation, which is new to the
literature. In Theorem 2, we assume that the demand distribution is PF2, which
is a common assumption in the inventory literature (e.g., Porteus 2002, Huggins
and Olsen 2010, Li and Yu 2012). The class of PF2 distributions includes many
commonly used distributions such as the exponential, the uniform, the Erlang, the
normal and convolutions of such distributions.

Theorem 2 Suppose that Di has a PF2 distribution. If z̄1
i = z̄2

i for 2 ≤ i ≤ n − 1,
then there is an optimal policy such that at least one of z̄1

1 , z̄2
1 , q̄1 and q̄2 is zero.
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Theorem 2 includes two special cases. The first case is when xi = 0 for all
i = 2, ..., n − 1, and the second is when the lifetime n = 2. In both cases, the
condition z̄1

i = z̄2
i for 2 ≤ i ≤ n − 1 is obviously satisfied. Transshipment allows

the retailer to send the oldest inventory to one outlet and the newest inventory to
the other (i.e., separation of inventories), and to send inventory from the outlet with
excess inventory to the outlet with a shortage (i.e., balance of inventories). Inventory
separation occurs when one of z̄1

1 , z̄2
1 , q̄1 or q̄2 is zero, or when two are zero and one

outlet holds only the oldest inventory and the other holds only the newest inventory.
To understand how inventories should be separated and how much benefit trans-

shipment can generate, Li et al. (2021) consider an approximation. Under the approx-
imation, the computation of the optimal policy relies on only two pieces of informa-
tion, namely, the number of items expiring in one period (old inventory) x1 and the
number of remaining items (new inventory), denoted by x[2] =

!n−1
j=2 xj . The profit-

to-go is approximated by a linear function. That is, in period t, let vt+1(x) = v
!n−1

j=1 xj ,
where v is a number bounded by c and s because the marginal value of inventory is
bounded by c and s.

Let zi1 and zi[2] represent the amount of old inventory and new inventory, respec-
tively, allocated to outlet i for regular sale. Let yi be the amount of new inventory
after ordering at outlet i, that is, the order-up-to level for new inventory at outlet i.
Let

J(z1, y) = −sz1 − cy + pEmin(D, z1 + y) − θE(z1 − (D − y)+)+ + αvE(y − D)+,

and, to find a heuristic policy, solve the following one-period optimization problem:

max{(c − s)(z1
[2] + z2

[2]) + J(z1
1, y

1) + J(z2
1, y

2)}

subject to z1
1 + z2

1 ≤ x1, z1
[2] + z2

[2] ≤ x[2], zi1 ≥ 0, zi[2] ≥ 0, yi ≥ zi[2] for i = 1, 2.
Li et al. (2021) then provide a theoretical bound for the gap between the perfor-

mance of the approximation and the optimal profit. When the demand is compound
Poisson, the bound approaches zero as the arrival rate approaches infinity. The op-
timal policy under the approximation is characterized by two increasing switching
curves that divide the entire state space into three regions. In the first region, only
one outlet holds old items but both hold new items. In the second, one outlet holds
only old items and the other holds only new inventory. In the third, only one outlet
holds new items while both hold old items.

Numerical studies show that transshipment and clearance sales are substitutes
in terms of both increasing profit and reducing waste. Transshipment can increase
profit by as much as several percentage points. It is most valuable in increasing profit
when the variable cost of products is high, the outdating cost is high, the clearance
sale price is low or the demand variability is high.

Zhang et al. (2018) study the transshipment of perishable inventory under a
FIFO rule and exogenous base-stock levels (The model is extended to allow general
ordering policies in Zhang et al. 2021 and is reviewed in Chapter 19). Their research
is motivated by a platelet (a blood product with a shelf-life of three days) inventory
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management problem in two hospitals that belong to the same integrated healthcare
system.

In the model, there are two locations indexed by superscripts i = 1, 2. The product
has a lifetime of n periods. The sequence of events is as follows. 1) At the beginning
of a generic period, the initial inventory at location i is xi = (xi1, ..., x

i
n−1), where xij

is the inventory level of products of age j. The base stock level at location i is Si , so
xi0 = (Si − !n−1

j=1 xij)+ items of fresh products are ordered. 2) The random demand
Di at each location is realized and satisfied. 3) Products are transshipped from one
location to the other in a FIFO manner; that is, older items are shipped first. Let
u denote the total items transshipped from location 1 to location 2. A negative u
implies transshipment from location 2 to location 1. Then, −D1 ≤ u ≤ D2. 4) After
transshipment, the products at each location are issued to satisfy demand in a FIFO
manner, and unmet demand is lost. 5) At the end of each period, products reaching
age n are disposed of.

Let Xi = (X i
1, ..., X

i
n−1) denote the initial inventory at location i at the beginning

of the next period. Then,

X i
j = (xij−1 − (Di + u(−1)i+1 −

n−1"
k=j

xik)
+)+.

Let pi , hi and θi denote the unit shortage, holding and outdating cost, respectively,
at location i. Denote r i as the unit transshipment cost from location i to the other
location. Without loss of generality, assume that the unit ordering cost at each location
is zero. Also assume that the system starts with zero inventory. The one-period cost
function L(x1, x2, u) is then given by:

2"
i=1

%
pi(Di + u(−1)i+1 − Si)+ + hi(Si − Di + u(−1)i)+

+θi(xin−1 − Di + u(−1)i)+ + r i(u(−1)i+1)+
&
.

Let Ct (x1, x2) denote the optimal expected cost-to-go function at period t. The
optimality equation is then defined as:

Ct (x1, x2) = E
%

min
−D1≤u≤D2

L(x1, x2, u) + αCt+1(X1,X2)
&
,

where α is the discount factor. The terminal condition is CT+1(x1, x2) = 0.
Zhang et al. (2018) first provide a partial characterization of the direction of

optimal transshipment. In the case of non-perishable inventory, the direction is
determined by whether a location experiences a surplus or a shortage under mild
cost conditions. However, for the case of perishable inventory, they show that an
important additional factor is the quantity of the oldest inventory xi

n−1, because of
the outdating cost.
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When the outdating cost is sufficiently small compared with the unit transshipment
cost, the optimal transshipment policy for the perishable case is the same as that for
the nonperishable case. The details are given in Theorem 3, where −i denotes the
location other than i and u∗ and uN∗ denote the optimal transshipment quantity for
the perishable and non-perishable cases, respectively.

Theorem 3

(i)

uN∗ =

'(()
((*

min{(S1 − D1)+, (D2 − S2)+} if S1 ≥ D1,D2 ≥ S2

−min{(D1 − S1)+, (S2 − D2)+} if D1 ≥ S1, S2 ≥ D2

0 otherwise.

(ii) |u∗ | ≥ |uN∗ |.
(iii) If θi ≤ r i − hi + h−i for i = 1, 2, then u∗ = uN∗.

Theorem 3 shows that, in general, the optimal transshipment quantity for the non-
perishable case provides a lower bound on that for the perishable case. Zhang et
al. (2018) further present an example to show that this lower bound is non-tight.
The implication of these results is that when managing perishable inventory, one
should expect transshipments to occur more often or in larger quantities than for
nonperishable inventory, because in the perishable case, transshipments are valuable
not only for reducing shortages but also for balancing the age of products at different
locations, thus reducing outdating.

They then investigate how the optimal transshipment quantity changes with the
inventory level at each location. For a special case with a two-period product lifetime,
they prove that the optimal cost function is L!-convex, which implies that the optimal
transshipment quantity is monotonic in the inventory level at each location. They
further show via a counterexample that the property of L!-convexity, however, does
not hold in the general case of longer product lifetimes.

These findings motivate Zhang et al. (2018) to develop a simple transshipment
policy that satisfies the monotonicity property. Under this policy, transshipment is
triggered when there is either a shortage or immediate outdating. In this case, only
the oldest products at each location are transshipped unless there is a shortage at
the other location. They then derive approximations of the expected cost functions,
which they then use to compute the base-stock levels for both locations. Using
real-life data from platelet inventory management in hospitals, they show that the
proposed policy performs well and significantly reduces the total cost compared with
benchmark policies.

Finally, through numerical studies, Zhang et al. (2018) show that the value of
inventory sharing for perishable products is typically higher than for nonperishable
products. Interestingly, unlike for non-perishable products, the value of inventory
sharing for perishable products can be strictly positive and substantial, even when
demand at one location is deterministic, because old perishable products in a location
with random demand can be transshipped to a location with deterministic demand to
reduce outdates. The implication of this result is that when products are perishable,
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transshipment should be considered even though the results in the nonperishable
inventory literature suggest that it has little or no value.

5 Control of Lifetimes

Firms can control the lifetimes of inventories when they enter the inventory system.
For example, retailers of perishable goods are often faced with a choice between more
expensive packaging that can extend shelf-life of their products and less expensive
packaging that cannot. Other examples include situations in which firms can buy
from multiple sources with different product lifetimes and costs.

Li et al. (2017) model a retailer who must determine in each period the optimal
order quantities and types of packaging. There are two types of packaging, which
they call “regular" and “active". Items in a regular package will perish in one period
and the variable cost, which includes the purchasing and packaging costs, is c1; items
in an active package have a two-period lifetime and the variable cost is c2, which is
higher than c1. Items that perish carry an outdating cost m per unit.

The total demand in each period is independently and identically distributed. Let
D be the random demand in a period. It is assumed that customers always prefer an
item with a longer remaining lifetime to an item with a shorter remaining lifetime.
That is, inventory is depleted on a LIFO basis. When items with a remaining lifetime
of two periods are out of stock, a random percentage β of customers are willing
to purchase items with a remaining lifetime of one period and the remainder will
walk away. Any unmet demand is lost and the penalty cost of not meeting demand
is p per unit. The objective is to determine the quantity of items in the two types of
packaging in each period that minimizes the total expected cost.

Let q be the quantity of items in active packaging with a two-period remaining
lifetime, y be the total number of items with a one-period remaining lifetime, which
includes the initial inventory at the beginning of each period and items just ordered
but in regular packaging, and Vt (x) be the minimum total expected cost from period
t to the end of horizon T , when the initial inventory is x. The costs incurred in future
periods are discounted by a discount rate α. Then,

Vt (x) = min
y≥x,q≥0

Jt (y, q) − c1x,

where

Jt (y, q) = c1y + c2q + pEg(y, q, β,D) + mES(y, q, β,D) + αEVt+1(Y (y, q, β,D)).

The amount of unmet demand, g(y, q, β,D), the initial inventory level in the next
period Y (y, q, β,D) and the amount of outdating in the current period S(y, q, β,D)
are given by:
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g(y, q, β,D) = (1 − β)[D − q]+ + [βD − βq − y]+,
Y (y, q, β,D) = (q − D)+,
S(y, q, β,D) = [y − β(D − q)+]+.

Here, [x]+ = max{x, 0}. In the above expressions, [βD−βq− y]+ and (1−β)[D−q]+
represent the amount of unmet demand due to the stockout of items with a one-
period and two-period remaining lifetime, respectively. The terminal condition is
VT+1(x) = −c1x, which means that any unused inventory at the end of the horizon
can be salvaged at a cost of c1 per unit.

Li et al. (2017) consider two cases that differ depending on the source of uncer-
tainty. In the first case, the total demand D in each period is random but the proportion
of customers willing to accept less fresh items β is not. In this case, they show that if
the proportion β is high enough, as the initial inventory level increases, the optimal
policy changes from using active packaging only to using regular packaging only
and finally to ordering nothing.

Note that the retailer here either uses active packaging or regular packaging, but
never both at the same time. In deciding on its choice of packaging, the retailer
must consider two critical factors. The first is the need to fulfill the demand in the
current period, and the second is the likelihood of items with a two-period lifetime
being carried over to the next period. Which packaging the retailer should use then
depends on the incremental cost. The incremental cost of using active packaging
decreases with the quantity of items in active packaging, and is lower than the cost
of using regular packaging if and only if the quantity of items in active packaging
is sufficiently large that the items in active packaging are highly likely to be carried
over to the next period. When the initial inventory x is small, a large amount of
extra supply is needed to fulfill the demand in the current period. The retailer should
then use active packaging only because then the chance of items with a two-period
lifetime being carried over to the next period for such a large order is high. As x
increases, the extra supply needed to fulfill the current demand decreases. When x
is sufficiently high, the retailer will switch to using regular packaging only. Using
active packaging but ordering only a small number of items is suboptimal because
the likelihood of a small number of items with a two-period lifetime being carried
over to the next period is low.

In the second case, the total demand D in each period is known with certainty but
the proportion of customers willing to accept less fresh items β is random. In this
case, the optimal policy is to use either active packaging only or regular packaging
only, depending on the cost parameters but independent of the initial inventory.

The analysis shows that regardless of the source of demand uncertainty, the
optimal policy structure exhibits the same pattern of “separation", that is, never use
both types of packaging in the same period. This phenomenon is specific to the LIFO
issuing rule and cannot happen under the FIFO issuing rule. The trade-off under FIFO
is different. It is worth using active packaging only when there are enough items with
a one-period remaining lifetime for there to be a high probability that items with a
two-period remaining lifetime will be carried over to the next period. Items with a
one-period remaining lifetime can either come from the initial inventory or from a
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new order in regular packaging in the current period. In other words, the retailer may
use both regular and active packaging at the same time under FIFO. The separation
phenomenon is reminiscent of the optimal clearance sales policies in Li et al. (2016)
and the optimal transshipment policies in Li et al. (2021).

From a practical standpoint, Li et al. (2017) highlight the significance of coordi-
nating inventory decisions and packaging decisions in grocery retailing. In practice,
retailers appear to focus on the choice between using only regular packaging and
using only active packaging. Some retailers decide to stay with regular packaging
because the additional packaging cost does not justify the benefit. Li et al. (2017) ar-
gue that retailers should consider the optimal policy, which in general only requires
the partial adoption of active packaging and has a lower packaging cost than the
policy of active packaging only. Retailers will find it easier to justify the additional
cost if they implement the optimal policy. However, from the perspective of waste
reduction, Li et al. (2017) show through numerical studies that the optimal policy
is almost as good as the policy of using only active packaging. These findings are
useful for retail practice.

While Li et al. (2017) focus on grocery retailing, the study by Zhou et al. (2011)
is motivated by hospitals’ practice of placing expedited orders for platelet inventory
in addition to regular replenishments to fulfill demand. They model this problem as a
perishable inventory system with dual sourcing. The platelets have a lifetime of three
periods. The interval of regular orders is two periods, which is called a cycle. At the
beginning of each cycle, the hospital determines the regular order quantity Q and
the order-up-to level s for expedited orders in the second period of the cycle. In the
analytical model, it is assumed that expedited platelets have a lifetime of two periods.
All replenishments have zero leadtimes. Therefore, all platelets in the second period
of a cycle are of the same age. These assumptions effectively reduce the dimension
of the state space of the dynamic program to one.

Let x denote the inventory level at the beginning of cycle t. Let Di denote the
demand in period i within cycle t, where i ∈ {1, 2}. Assume that unmet demand is
lost and that the issuing rule is FIFO. The amount of expedited units can then be
expressed as Qe = (s−(Q−(D1−x)+)+)+. The amount of outdated inventory is given
by O = (x − D1)+. The amount of inventory at the beginning of the second period
after expediting is X̃ = max{s, (Q − (D1 − x)+)+}. Thus, the state at the beginning
of the next cycle is X = (X̃ − D2)+. The total shortage within a cycle is given by
L = (D1 − x − Q)+ + (D2 − X̃).

Without loss of generality, the regular ordering cost is assumed to be zero. Let ce,
p and θ denote the expedited unit ordering cost, unit shortage cost and outdating cost,
respectively. Let Vt (x) denote the optimal cost from cycle t to the end of planning
horizon T . The dynamic program is then given by

Vt (x) = min
Q,s

ceE[Qe] + θE[O] + pE[L] + E[Vt+1(X)].

The terminal condition is given by VT+1(x) = θE(x − D1)+ + pE(D1 − x)+.
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Zhou et al. (2011) then show that when solving the dynamic program backwards,
the optimal solutions Q∗ and s∗ are uniquely determined by the first-order conditions
of the objective function with respect to Q and s.

Using real-life data for platelets, Zhou et al. (2011) then numerically investigate
how the optimal cost and optimal decisions vary with the model parameters. In
simulation studies, they also incorporate lead times and variable product lifetimes
for expedited orders. The numerical results show that the optimal cost is significantly
affected by demand uncertainty, lead times, seasonality and the age of expedited
orders. The optimal decisions are significantly affected by a change in expected
demand but not by a change in demand variance. Furthermore, the expedited order-
up-to level is relatively unchanged with respect to demand uncertainty, lead times,
seasonality and age. The numerical results also imply that for small hospitals with
low average demand but high demand uncertainty, the (Q, s) policy is better than the
Q policy where regular orders are placed every period; for large hospitals with low
demand uncertainty, the Q policy would be preferred.

In a more recent paper, Chen et al. (2020) extend the model in Zhou et al. (2011)
by allowing for both returns and platelet refills during the regular ordering cycle. All
of the papers reviewed in this section impose strong assumptions on lifetimes. What
is the form of optimal policies when there are two sources of supply with different
costs and lifetimes and lifetimes are general finite numbers? This appears to be an
open question.

6 Empirical Research

Studies in the literature on perishable inventory control focus on pricing and in-
ventory policies under certain assumptions about consumer behavior and suppliers.
Some interesting empirical studies, albeit with different foci, can inform inventory
research.

The study by Tsiros and Heilman (2005) examines consumers’ behavior with
respect to expiration dates for perishable grocery products. In particular, they show
that consumers’ willingness to pay and their frequency of checking expiration dates
depend on their perceived risk associated with expiration, which varies from product
to product, their consumption rates, and their ability to take measures to stop or
slow the aging process of perishable products. These findings confirm that to bring
perishable inventory models closer to current practice, it is necessary to model
multiple classes of customers who may have different minimum acceptable remaining
product lifetimes and may use different issuing rules.

While Tsiros and Heilman (2005) focus on consumer behavior, Akkas et al. (2019)
focus on the supply side. They find that the main sources of product expiration
in retail stores are large case sizes relative to daily consumer demand, long lead
times, minimum order rules, replenishment workload and manufacturers’ incentive
programs for the sales force. These findings are useful for managers developing
targeted product design and information and incentives design initiatives to reduce
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waste. For inventory researchers, these findings show that there are opportunities to
investigate ideas for managing perishable inventory that involve the whole supply
chain, as opposed to only the retailer.

7 Future Research

In the literature, either FIFO or LIFO rule is assumed. The assumption behind the
LIFO rule is that consumers are infinitely rational, therefore, in traditional bricks-
and-mortar stores where consumers decide which items to pick, the LIFO rule is
appropriate. However, the reality is more complex. In bricks-and-mortar stores, older
items are usually placed in more convenient reach of customers on the shelves and
picking the newest items requires additional effort. While some customers may be
willing to make that effort, others may settle for items that are less fresh. One way
to capture some of this complexity is to have multiple classes of consumers. For
example, one class of consumers chooses items on a LIFO basis, whereas other
classes use the FIFO rule but will not select items unless their remaining lifetimes
are sufficiently long.

In e-commerce, where retailers control inventory issuance, the FIFO rule is usu-
ally assumed because it minimizes outdating. However, it may be suboptimal for
retailers if consumer welfare, which is usually important to retailers, is sensitive to
the remaining lifetimes of products. In a fuller model that captures this additional
issue, the retailer should jointly determine ordering and issuing policies such that the
utility, which includes revenue, inventory related costs, and the impact on consumer
welfare, is maximized.

One important insight contained in Operations Management textbooks is that
consolidating multiple retail outlets into one can reduce the mismatch between
supply and demand if demand is not affected by the consolidation, and this is
beneficial to retailers. Is this result still true when consumers choose products on a
LIFO basis, which is typically the case in physical stores? The foregoing discussion
suggests that it may not be true in general. Having all inventories in one location
means that consumers will not choose older items unless newer items are sold out.
However, if inventories are placed in multiple locations, older items may be sold in
some locations if newer items are sold out, even if there might still be newer items in
other locations. When consolidation benefits retailers is an interesting and practical
question for future research.
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