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A firm needs to select applicants from an applicant pool to fill a number of identical job positions. Each

applicant in the pool has an initial score that is related, albeit imperfectly, to their true qualification. The

firm can select applicants based on these initial scores, but can also conduct tests to learn more about them.

Tests are costly but produce additional signals about the applicants; however, the signals are also imperfectly

related to their qualifications. How many and which applicants should the firm accept based solely on the

initial scores, and how many and which applicants should the firm short-list for additional testing? Among

those short-listed, how many and which applicants should the firm accept? How do the answers to these

questions depend on the informativeness of the signals generated by the tests?

We develop a model framework for answering these important questions. We show that there are two

cutoffs for the initial scores such that the applicants with initial scores higher than the upper cutoff should be

accepted, those with initial scores lower than the lower cutoff should be rejected, and those with initial scores

in between the cutoffs should be short-listed for additional testing. As the tests become more informative, the

upper cutoff increases and the lower cutoff decreases; in other words, the firm accepts fewer applicants based

solely on their initial scores, short-lists more for additional testing, and rejects a smaller number based on

their initial scores. The short-listed applicants are ranked based on their initial and test scores, and how the

scores affect the ranking depends on how they are related to the applicant qualifications. If one short-listed

applicant is accepted, then all those who rank strictly higher must also be accepted.

We compare the optimal policy with two commonly used policies in practice: screen-to-hire, where no

additional testing is conducted, and test-to-hire, where all accepted applicants must go through additional

testing. Both are easier to compute than the optimal policy. Although they are suboptimal in general,

they provide useful bounds, which facilitates the computation of the optimal policy. Our model involves a

large state space with both integer and continuous variables, making the problem technically challenging.

To compute the optimal policy, we use an approximation of the objective function that has theoretical

performance guarantees. Overall, our model framework is general and is applicable to contexts such as high-

volume recruitment, loan approvals, medical triage, and startup funding and investments.
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1. Introduction

Hiring people with the right qualifications is important to any organization. The process of hiring

the right people, however, can be complex, costly and time consuming. For example, applications

to master’s programs accredited by the Association to Advance Collegiate Schools of Business

(AACSB) increased by 48% between 2018 and 2024, rising from an average of 2,040 applications per

institution to 3,013 (AACSB 2024), and according to data from Internet Collaborative Information

Management Systems (iCIMS) in April 2024, there were an average of 30 applications per job

opening across industries, with tech-related jobs experiencing a 45% increase in job openings,

manufacturing a 31% increase, and healthcare a 26% increase over the past year (iCIMS 2024).

The Society for Human Resource Management (SHRM) reports that the average hiring cost rose

from $4,129 in 2019 to $4,700 in 2023, a 14% increase, with executive hiring costs averaging $28,329

(Prokopets 2024). In addition, filling a position typically takes about two months (Navarra 2022).

In spite of considerable effort, hiring processes often lead to poor hiring outcomes. One reason

for this is that the true qualifications of applicants are not known for sure at the time of hiring, and

firms involved in hiring must rely on observable signals to infer their qualifications. The quantity

and quality of the signals depend on how the process is managed and how many resources the firms

are willing to invest. To streamline the process, firms often rely on sequential processes in which

applicants are evaluated in multiple stages, and applicants who meet certain criteria proceed from

one stage to the next. In a sequential process, the assessment in some stages may be automated,

while that in other stages relies on human judgment. For example, earlier stages may use artificial

intelligence tools to save costs and time; they are sometimes called pre-filtering or screening stages

in practice. Screening can use features identified in application materials to generate screening

scores, which may correlate with qualification. In later stages, applicants are interviewed by hiring

managers or relevant personnel who can leverage their experience and personal judgment.

In this study, we consider a sequential process with two stages, which we call screening and

testing. The firm needs to select applicants from an applicant pool to fill a number of identical job

positions. After an initial screening process, each applicant has an initial score, which reflects, albeit

imperfectly, the applicant’s true qualification. The firm can accept applicants based on the score,

but it can also conduct tests to learn more about the applicants before accept/reject decisions are

made. These tests, however, are costly and the additional signals they yield are also imperfectly

correlated with qualifications. In this environment, several questions are crucial. First, how many

and which applicants should the firm accept based solely on the initial scores, and how many and

which applicants should the firm short-list for further testing? Second, for those short-listed, how

many and which applicants should the firm accept? Third, how does the informativeness of the

signals generated by the tests affect the optimal policy?
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Depending on how the first question is answered, there can be three policies in practice. The

first, which we call screen-to-hire, is to base all reject/accept decisions solely on the initial scores

and do no testing at all. The argument for this policy is that the screening scores are sufficiently

informative, and perhaps more importantly, the size of the applicant pool is so large that testing is

too costly. The second, which we call test-to-hire, is the opposite. That is, no one can be accepted

unless they have been tested in the second stage. The argument for this policy is that testing,

costly as it is, produces quality signals and hence is worth conducting. Among the many master’s

level programs offered by major business schools, some are adopting the first policy,1 and others

the second (Du and Li 2020). The third policy is somewhere between the first and second policy.

That is, some applicants are accepted based only on their initial scores and some proceed to the

second stage for further testing before accept/reject decisions are made. In late September 2014,

LinkedIn’s talent acquisition team needed to hire 100 employees within 60 days to align with their

sales strategies. They developed a scoring system that allowed high-scoring applicants to bypass

certain interview stages and medium-scoring applicants to go on to a second phone interview

(Jedeikin 2015). This suggests that they are using a variation of the third policy.

The sequential process, as well as the possible policies that we described above, are important

in recruitment. However, there are other business scenarios that share the same characteristics.

For example, a population of start-ups approaches an investor such as Y Combinator or TechStars

for funding. The investor has limited financial resources and can only fund a subset of start-ups.

The investor first screens the start-ups by evaluating their business plans, market potential, and

founding teams based on pitch decks or initial proposals. The results are summarized in initial

scores. Based on the initial scores, the investor can immediately invest in some start-ups, reject

others, and require the remaining start-ups to proceed to the next round, which involves a more

detailed due diligence process. Other examples that share the same characteristics include bank

loan approvals and medical triage.

Despite the broad applicability of the problem described above, there is little work done about it

in the academic literature. We suspect that in practice, these important decisions are often based

on gut feelings or elementary statistical analyses, as seen with LinkedIn’s approach, and there are

no rigorous decision tools to support. One possible reason is the complexity of the problem. To

find the optimal subset in each stage, one must solve an optimization problem that involves both

integer (number of applicants) and continuous (initial scores and signals from the tests) variables.

In addition, when the population size is large, the problem has a large state space, which adds to

the computational challenge.

1 For example, some master’s programs make selections primarily or entirely based on application materials. See, e.g.,
https://www.cityu.edu.hk/pg/taught-postgraduate-programmes/apply-now.

https://www.cityu.edu.hk/pg/taught-postgraduate-programmes/apply-now
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The objective of this study is to provide a model framework for a firm to answer the important

questions that arise in the problem described above. We show that the optimal policy is charac-

terized by a two-cutoff structure: applicants with initial scores above the upper cutoff are hired

directly, those below the lower cutoff are rejected, and those in between the cutoffs are short-

listed for additional testing. Therefore, the screen-to-hire and test-to-hire policies are in general

suboptimal. As the test in the second stage becomes more informative, the firm should decrease

the number of applicants accepted solely based on initial scores, increase the number short-listed

for further testing, and reduce the number rejected before testing. These monotone comparative

statics results are established under a general prediction model of applicant qualification.

We then analytically compare the optimal policy with the two commonly used test-to-hire and

screen-to-hire policies, which are easier to compute than the optimal policy. The comparison leads

to interesting bounds that can help us better understand why the two policies are suboptimal. These

bounds are also useful in reducing the search region when computing the optimal policy. Finally, we

compare the optimal policy with the two suboptimal policies numerically. As the optimal policy is

not easily computable, we approximate the objective function. The approximation is accurate when

the number of short-listed applicants is large, which is exactly the situation when approximation is

needed the most. Our numerical results show that the optimal policy considerably outperforms the

test-to-hire policy when the informativeness of the test is low, and it also demonstrates significant

superiority over the screen-to-hire policy when the informativeness is high. These performance gaps

persist even as the applicant pool increases in size.

The rest of the paper is organized as follows. In Section 2, we provide a discussion of the related

literature. We formulate the problem in Section 3, and present the two-cutoff structure of the

optimal policy in Section 4. In Section 5, we investigate the impact of the informativeness of the

test on the optimal policy, and in Section 6, we compare the optimal policy with the suboptimal

screen-to-hire and test-to-hire policies. Finally, approximations and numerical studies are presented

in Section 7. All of the proofs are relegated to Appendix B.

2. Related Literature

Our study falls within the area of sequential assignment in the operations research/management

literature. A primary focus in this field is the allocation of a fixed amount of resources to applicants

who arrive randomly over time. Relevant studies include Vera and Banerjee (2021) on online

resource allocation; Arlotto and Gurvich (2019) and Arnosti and Ma (2023) on secretary problems;

Prastacos (1983) and Ahn et al. (2021) on opportunity and asset investment; and Vulcano et al.

(2002) on dynamic auctions, among many others. These studies typically assume that applicants

arrive one at a time and the decision maker must reject or accept them on the spot. In Li and
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Yu (2021), however, applicants are assessed only at pre-determined fixed time intervals, and hence

applicants are assessed in batches. Building on Li and Yu (2021), Du et al. (2024) extend the model

to allow random yields. They propose asymptotically optimal algorithms and test them in a case

study. In Gong and Li (2024), applicants depart the system after a random amount of time, and

the firm must determine when to assess the applicants in the system and to whom to make offers.

In the current study, all of the applicants are available at the beginning and have initial scores,

and the firm has the option of conducting costly testing to obtain additional information about

the applicants before making accept/reject decisions.

While our analysis is relevant to a broad range of business scenarios, it is specifically rooted in

the context of job market hiring. Several studies examine the role of sequential testing in personnel

selection. The earliest formulation of sequential testing was developed by Cronbach and Gleser

(1965). Subsequent research explores various settings; for example, De Corte (1998) extends the

framework to include a probationary period, and De Corte et al. (2006) consider a mixture of

applicant groups and provide a comprehensive review of the literature on personnel selection.

In addition, Du and Li (2020) present a statistical procedure for estimating the probability of

false rejections; their goal is to keep this probability below a specified level. Multistage personnel

selection problems share similarities with industrial inspection problems, where products, unlike

applicants who have different qualifications, are either good or defective, and firms seek to balance

inspection-repair costs with the costs associated with allowing defective units to reach end markets

(see, e.g., Yao and Zheng 2002). Our study diverges from the existing research on sequential testing

in personnel selection in two significant ways. First, most studies focus on determining to whom

to extend offers after all of the tests have been completed, whereas we are also interested in how

many and which applicants should be accepted immediately based on their initial scores, and how

many and which applicants should be short-listed for further testing. Second, we investigate how

the informativeness of the signals generated by tests influences the optimal policy.

Finally, our study is related to ranking and selection problems in the statistics and econometrics

literature. For example, Gu and Koenker (2023) develop a nonparametric empirical Bayes approach

in a compound decision framework to select a proportion of the best or worst populations, and

Klein et al. (2020) and Mogstad et al. (2024) measure the uncertainty involved in estimating the

ranks of true qualifications by constructing confidence sets for these ranks. For a detailed review of

recent developments in this field, readers can refer to Mogstad et al. (2023). While the goal of these

studies is usually to control the probability of correct or incorrect selection, ours is to maximize

the aggregated value (or effect size, in statistical terms). In addition, in our study, the selection is

made sequentially.



6

3. Problem Formulation

In the following, we use bold letters to represent vectors. For s = (s1, s2, . . . , sn), define s−j =

(s1, . . . , sj−1, sj+1, . . . , sn) and (si)i∈I the same as s, but keep only the coordinates in I ⊂
{1,2, . . . , n}. For example, (si)i∈{1,n} = (s1, sn). For random vector S = (S1, S2, . . . , Sn), let S[i],

i = 1,2, . . . , n, be the ith order statistic of S, which is defined as the ith largest element in S.2

Denote the size of a finite set A by |A|. Let x+ =max{x,0} and x− =max{−x,0}. Comparative

adjectives such as “higher” and “lower” are used in a weak sense.

A firm needs to select applicants to fill d identical job positions. There are n applicants in the

applicant pool. All of the applicants in the pool have gone through an initial assessment, and for

applicant i = 1,2, . . . , n, let Xi1 represent applicant i’s initial score. The firm has the option of

conducting an additional test, which costs c per applicant. For applicant i= 1,2, . . . , n, let Xi2 be

the test scores. The qualification of applicant i, which represents their value to the firm, is denoted

by Yi, and it is unknown but related to both the initial score and the test score. The firm can

predict the qualification Yi based on the initial score and the test score.3 Given a random triplet

(X1,X2, Y )∈R3, consider the following two regression functions:

f(X1) =E [Y |X1] and g(X1,X2) =E [Y |X1,X2] . (1)

Assume that (Xi1,Xi2, Yi) are independent and identically distributed (i.i.d.) copies of (X1,X2, Y ).

Then, Xi1, Xi2, and Yi are associated as the following prediction model:

Yi = f(Xi1)+ ϵi and Yi = g(Xi1,Xi2)+ ϵ′i, (2)

where E [ϵi |Xi1] =E [ϵ′i |Xi1,Xi2] = 0. Because the errors ϵi and ϵ
′
i are unpredictable, the regression

functions f(·) and g(·, ·) are the optimal predictors (under squared error loss) of the qualification Yi

(Györfi et al. 2002), without and with further testing, respectively.4 After observing the initial score

Xi1, the firm can either use f(Xi1) to predict Yi or conduct an additional test for more information.

In the latter case, because Xi1 has been observed, the predictor is g(Xi1,Xi2) conditionally on

Xi1, denoted by g(Xi1,Xi2) |Xi1. The prediction model (2) is intimately connected to sequential or

Type I analysis of variance (ANOVA), which provides a statistical test for the stepwise inclusion

2 In the literature, the ith order statistic is normally defined as the ith smallest element.

3 As an example, in the context of graduate student recruitment, Xi1 can be a summary score computed based on
relevant features identified in the application materials, Xi2 interview score, and Yi the GPA in the program (Du and
Li 2020).

4 Regression functions are often used to predict arm rewards in the literature on linear and contextual bandits (see,
e.g., Goldenshluger and Zeevi 2013, Bastni and Bayati 2020). In the context of job market hiring, Xi1 and Xi2 can
represent observable characteristics, and Yi can be the applicants’ skill levels. Each group of applicants (e.g., majority
and minority groups) is linked to a specific linear regression function, and the firm predicts applicants’ skills using
these predictors. For a detailed discussion of this bandit setting, see Komiyama and Noda (2024).
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of predictors in a regression model. This method allows for the assessment of the incremental

contribution of each factor to the response.

We impose the following assumptions on the prediction model (2).

Assumption 1. (i) f(·) is increasing. (ii) The error difference ϵi − ϵ′i is independent of Xi1.

The first condition ensures a positive correlation between initial scores and qualifications. The

requirement for independence between the error difference ϵi − ϵ′i and the initial score Xi1 can

be satisfied in many contexts, as illustrated in the examples below. Assumption 1 implies the

more familiar concept of g(Xi1,Xi2) being positively regression dependent on Xi1; that is, the

conditional probability P(g(Xi1,Xi2) ≤ y|Xi1 = x) is decreasing in x for all y (Lehmann 1966).

Positive regression dependence suggests that large (small) values of Xi1 tend to be associated with

large (small) values of g(Xi1,Xi2), which is relevant in our context. Lehmann (1966) provides several

examples of distributions that satisfy this dependence, including bivariate normal, multinomial,

and multiple hypergeometric distributions. Positive regression dependence is also frequently used

in multiple hypothesis testing, such as in false discovery rate control where p-values or e-values

satisfy positive regression dependence properties (see, e.g., Benjamini and Yekutieli 2001, Wang

and Ramdas 2022).

Next, we introduce two specific examples and show how the assumptions hold in these examples.

Example 1 (Multivariate Normal Model). Suppose that the random triplet (X1,X2, Y )

follows a multivariate normal model with mean µ= (µx1 , µx2 , µy) and the covariance matrix

Σ=

 σ2
x1

σx1,x2 σx1,y

σx2,x1 σ2
x2

σx2,y

σy,x1 σy,x2 σ2
y

 .

Using the recruitment data from a postgraduate business program, Du and Li (2020) confirm that

a multivariate normal distribution is appropriate for their context. Assume that σx1,y ∈R+. In this

case, the regression functions (1) can be decomposed into the following linear forms (Johnson and

Wichern 2014, Result 4.6):

f(Xi1) = µy +
σx1,y

σ2
x1

(Xi1 −µx1), (3)

and

g(Xi1,Xi2) = µy + γ1(Xi1 −µx1)+ γ2(Xi2 −µx2), (4)

where γ1 = (σ2
x2
σx1,y − σx2,yσx1,x2)/(σ

2
x1
σ2
x2

− σ2
x1,x2

) and γ2 = (σ2
x1
σx2,y − σx1,yσx1,x2)/(σ

2
x1
σ2
x2

−
σ2
x1,x2

). In addition, Xi2 is regressed on Xi1 with the following linear form:

Xi2 =E(Xi2|Xi1)+ ϵ′′i = µx2 +
σx1,x2

σ2
x1

(Xi1 −µx1)+ ϵ′′i , (5)
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where ϵ′′i is normally distributed with a mean of zero and a variance of σ2
x2
−σ2

x1,x2
/σ2

x1
. By (3)-(5)

and some simple algebra, we have

g(Xi1,Xi2) = f(Xi1)+ γ2ϵ
′′
i .

It is clear that f(·) is increasing, both errors ϵi and ϵ
′
i are independent of Xi1, and hence so is their

difference γ2ϵ
′′
i . □

Example 2 (Linear Probability Model). Consider a binary response of Yi. For example,

Yi = 1 if employee i is skilled and Yi = 0 if i is unskilled; or Yi = 1 if applicant i eventually graduates

and Yi = 0 if i fails to graduate. In this case, the primary interest lies in the response probabilities

f(Xi1) and g(Xi1,Xi2), which can be specified as the linear probability model (Wooldridge 2010):

f(Xi1) = P(Yi = 1 |Xi1) = α0 +α1Xi1,

and

g(Xi1,Xi2) = P(Yi = 1 |Xi1,Xi2) = β0 +β1Xi1 +β2Xi2,

where α1 ∈ R+, and α0, βj ∈ R, j = 0,1,2. If Yi = 1, then ϵi = 1− f(Xi1) with probability f(Xi1),

and if Yi = 0, then ϵi = −f(Xi1) with probability 1− f(Xi1). Thus, given Xi1, ϵi has a mean of

zero and a variance equal to f(Xi1)(1−f(Xi1)). The conditional distribution of ϵ′i can be similarly

described. The two random variables Xi1 and Xi2 are associated through the following regression

Xi2 =E [Xi2 |Xi1] + ϵ′′i ,

where E [ϵ′′i |Xi1] = 0. It can be shown that g(Xi1,Xi2) = f(Xi1)+β2ϵ
′′
i . If ϵ

′′
i and Xi1 are indepen-

dent, the linear probability model satisfies Assumption 1. While the error difference ϵi − ϵ′i = β2ϵ
′′
i

is independent of Xi1, unlike Example 1, here both errors ϵi and ϵ
′
i are dependent on Xi1. □

From these examples, it can be seen that the prediction model (2) with Assumption 1 encom-

passes all of the linear regression models in which the regression function f(·) is linearly increasing,

the regression function g(·, ·) is linear, and the test score Xi2 can be expressed as an independent

combination of the initial score Xi1 and an error term. A discussion of the implications of relaxing

Assumption 1 can be found in Appendix A.

According to Assumption 1(ii), the functional form of the conditional variance Var(g(Xi1,Xi2) |
Xi1) is a constant. We denote the variance as σ2. In addition, by the law of iterated expectations,

the conditional expectation is given by E [g(Xi1,Xi2) |Xi1] = f(Xi1). Let X1 = (X11,X21, . . . ,Xn1)

and its realization x1 = (x11, x21, . . . , xn1). Given X1 = x1, we define the following random variables:

S′
i(xi1) = g(Xi1,Xi2) |Xi1 = xi1 ∼ (f(xi1), σ

2), i= 1,2, . . . , n,
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which are independent across i. Here, S ∼ (µ,σ2) means that random variable S has a mean of µ

and a variance of σ2. Let the realization of S′
i(xi1) be s

′
i(xi1).

The timing of events is as follows. (1) The firm observes the initial scores of all of the applicants

in the pool X1 = x1. With this information, the firm determines how many applicants to accept

based solely on their initial scores, how many to short-list for additional testing, and who to accept

and short-list. The expected value of accepting applicant i to the firm at this point is f(xi1).

(2) For those short-listed, the firm conducts testing to obtain the test results Xi2. The firm then

determines again how many and whom to accept based on both the initial scores and test scores.

The expected value of accepting applicant i to the firm at this point is s′i(xi1). (3) In the end, there

is a penalty cost, measured by a convex function G(·), if the total number of applicants accepted,

denoted by q, deviates from the hiring target d. The penalty cost can be defined as, for example,

G(q− d) = cu(q− d)− + co(q− d)+ for some positive marginal underage and overage costs, cu and

co, respectively. In practice, the volume of the applicant pool is typically much larger than the

target. When the volume of the applicant pool is large enough, if we choose cu = co =∞, then the

firm will always hire exactly d applicants.

Let U ⊂ {1,2, . . . , n} be the set of applicants accepted based sorely on the initial scores, and

Z ⊂ {1,2, . . . , n} \ U be the set of applicants short-listed for additional testing. After additional

testing, let H ⊂ Z be the set of applicants who are accepted. The objective of the firm is to

maximize the total expected value of all of the accepted applicants, minus the cost of testing and

the penalty cost in the end. The problem formulation is as follows:

(P0) max
∑
i∈U

f(xi1)− c|Z|+E

[
max
H⊂Z

{∑
i∈H

S′
i(xi1)−G(|U|+ |H|− d)

}]
s.t. U ∪Z ⊂ {1,2, . . . , n} ,

U ∩Z = ∅,

where the expectation is taken with respect to the random test results. The maximization problem

inside the expectation refers to the problem of selecting applicants to place on the offer list after

the test is conducted.

It can be shown that, after additional testing, the optimal policy for determining the offer list H
is a cutoff type. That is, there exists a cutoff such that any applicant i is on the offer list if and only

if their expected value s′i(xi1) to the firm is no less than this cutoff. Then, the inner maximization

problem can be written as

max
H⊂Z

{∑
i∈H

S′
i(xi1)−G(|U|+ |H|− d)

}
= max

0≤h≤|Z|

{
h∑

i=1

S′
[i](x1,Z)−G(|U|+h− d)

}
, (6)

where S′
[i](x1,Z) is ith order statistic of (S′

i(xi1))i∈Z .
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4. The Two-Cutoff Policy

We first establish the following properties of the second-stage optimization problem.

Lemma 1. For any i∈Z, we have

0≤∇xi1E

[
max

0≤h≤|Z|

{
h∑

j=1

S′
[j](x1,Z)−G(|U|+h− d)

}]
≤∇f(xi1).

For the first inequality, the total expected value to the firm is increasing in xi1, because the

qualification of applicant i is positively correlated to his or her initial score. The second inequality

holds because only some short-listed applicants are accepted eventually.

With Lemma 1 as a building block, we can show how the firm should determine how many and

which applicants to accept, and how many and which applicants to short-list for further testing,

based on the initial scores. In particular, the optimal policy of determining U and Z is a two-cutoff

policy.

Theorem 1. For Problem (P0), before further testing is conducted, there exist two cutoffs such

that the initial scores of all of the hired applicants must be higher than the upper cutoff, and the

initial scores of all of the rejected applicants must be lower than the lower cutoff.

As a special case, when several applicants have the same initial scores, under the optimal policy,

it is possible that among the applicants with the same initial score, some are accepted and others

are short-listed or some are short-listed and others are rejected. In the following, we let u = |U|
and z = |Z|. In a slight abuse of notation, let S(x1, u, z) = (Su+1, Su+2, . . . , Su+z) be the random

vector of the values of the short-listed applicants. Here, the ith element corresponds to the value

of the applicant who has the (u+ i)th highest initial score. For example, if u applicants have been

accepted without further testing, and applicant j’s initial score is the (u+ i)th (1≤ i≤ z) highest,

then he or she will be short-listed for further testing with the value S′
j(xj1) = Su+i. The mean of

Su+i is f(x[u+i]1) and the variance is σ2, and Su+i are independent across i. We let µi = f(x[i]1)

for notational convenience. Because f(·) is increasing, µi decreases with i. In addition, let the

realization of S(x1, u, z) be s(x1, u, z) = (su+1, su+2, . . . , su+z).

Now, let S[i](x1, u, z) represent the ith order statistic of S(x1, u, z). In the following, we suppress

x1 in the notation when there is no risk of confusion. According to Theorem 1, we rewrite Problem

(P0) as follows:

(P1) max
u∑

i=1

µi − cz+E

[
max
0≤h≤z

{
h∑

i=1

S[i](u, z)−G(u+h− d)

}]
s.t. u∈ {0,1, . . . , n} ,

z ∈ {0,1, . . . , n−u} ,
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where the expectation is taken with respect to S(u, z). Let (u∗, z∗) be the optimal solution. When

there are multiple maximizers, (u∗, z∗) is defined as the largest in lexicographical order. For con-

venience, we also denote k= u+ z (k∗ = u∗ + z∗) as the total (optimal) number of applicants who

are either accepted based on initial scores or short-listed for further testing. Furthermore, define

Fz(u, s) = max
0≤h≤z

{
h∑

i=1

s[i] −G(u+h− d)

}
, ∀s= (s1, s2, . . . , sz)∈Rz, (7)

where the subscript z in Fz(u, s) means that the second argument s has z dimensions, and s[i] is

the ith largest element in s. Denote by h∗ the largest maximizer. The goal of (7) is to find a subset

of short-listed applicants to accept after the test results are observed.

To proceed, we first analyze (7). Recall that s−i(u, z) = (su+1, . . . , su+i−1, su+i+1, . . . , su+z). For

any i ∈ {1,2, . . . , z}, we concatenate the vector s−i(u, z) and the vector of z marginal values of

G(·) to obtain a new vector ŝ(u, z, i) = (ŝ1, ŝ2, . . . , ŝ2z−1) = (s−i(u, z),∆G(u+ 1− d),∆G(u+ 2−
d), . . . ,∆G(u+z−d)), where ∆G(h−d) =G(h−d)−G(h−1−d). We show in the following lemma

that Fz(·, ·) in (7) has a special functional form.

Lemma 2. The function Fz(u, s(u, z)), which is defined in (7), can be written as follows:

Fz(u, s(u, z)) = (su+i − ŝ[z](u, z, i))
+ +Fz−1(u, s−i(u, z)), (8)

where ŝ[z](u, z, i) is the zth largest element in ŝ(u, z, i) or the median of ŝ(u, z, i), and F0(u, ·) =
−G(u− d).

The function Fz(u, s(u, z)) can be iteratively expressed as the sum of a piecewise linear function

of su+i and a term that is independent of su+i. The score su+i is included in the optimal score set

(i.e., the set of scores of the applicants in the offer list) if and only if Fz(u, s(u, z)) depends on

su+i. This means that su+i is in the optimal score set if and only if it is larger than ŝ[z](u, z, i). For

example, in Figure 1(a), with z set to 5, the vector ŝ(u,5, i) = (s−i(u,5),∆G(u+1−d),∆G(u+2−
d), . . . ,∆G(u+5−d)) is arranged in descending order from top to bottom. Here, su+i is assumed to

be the second largest element in s(u,5). Because su+i exceeds the fifth largest element in ŝ(u,5, i),

which is ŝ[5](u,5, i) = s[3](u,5), it follows that su+i should be included in the optimal score set. In

summary, Lemma 2 provides us an efficient way to determine whether su+i should be included in

the optimal score set.

We can also apply a similar procedure to find all su+i’s that should be included in the opti-

mal score set. (1) We sort the concatenated vector š(u, z) = (š1, š2, . . . , š2z) = (s(u, z),∆G(u+1−
d),∆G(u+2−d), . . . ,∆G(u+z−d)) in descending order and (2) pick all su+i with su+i ≥ š[z](u, z),

where š[z](u, z) is the zth largest element in š(u, z). These picked elements, and these picked ele-

ments only, should be in the optimal score set. Indeed, because š(u, z) has one more element,
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Figure 1 Determining the Optimal Score Set

s[5](u, 5)

s[4](u, 5)

ŝ[5](u, 5, i) = s[3](u, 5)

su+i = s[2](u, 5)

s[1](u, 5)

∆G(u + 1− d)

∆G(u + 2− d)

∆G(u + 3− d)

∆G(u + 4− d)

∆G(u + 5− d)

(a) Whether a score is in the set

s[5](u, 5)

s[4](u, 5)

s[3](u, 5)

s[2](u, 5)

s[1](u, 5)

∆G(u + 1− d)

∆G(u + 2− d)

∆G(u + 3− d) = š[5](u, 5)

∆G(u + 4− d)

∆G(u + 5− d)

(b) Determining the whole set

Note. We set z = 5. The elements are arranged in descending order from top to bottom.

su+i, than ŝ(u, z, i), we have š[z](u, z)≥ ŝ[z](u, z, i). Then, according to Lemma 2, su+i ≥ š[z](u, z)≥
ŝ[z](u, z, i) implies that su+i should be included in the optimal score set. In turn, if there exist some

su+i included in the optimal score set such that su+i < š[z](u, z), then we must have š[z](u, z) =

ŝ[z](u, z, i) because the largest z elements in š(u, z) and ŝ(u, z, i) are the same. This implies that

su+i < ŝ[z](u, z, i), which contradicts Lemma 2. For example, in Figure 1(b), ∆G(u+3− d) is the

cutoff š[5](u,5). Therefore, the two largest elements, s[1](u,5) and s[2](u,5), in s(u,5) are included

in the optimal score set.

As our discussion unfolds, it will become clear that Lemma 2 is very useful in analyzing our

problem. Recall that k = u+ z refers to the total number of applicants who are either accepted

based on initial scores or short-listed for further testing. By replacing z with k − u in Problem

(P1), the new constraint set {0,1, . . . , n}× {u,u+1, . . . , n} of (u,k) is a lattice. As an immediate

consequence of Lemma 2, the objective function of Problem (P1) is shown to be submodular in

(u,k), which is needed to prove Theorems 2 and 3.

Lemma 3. Fk−u(u, s(u,k−u)) is submodular in (u,k).

Because submodularity is preserved under expectation, it is easy to see that the objective function

of Problem (P1) is also submodular in (u,k). The submodularity implies that the number of

applicants hired based solely on their initial scores, u, and the total number of those who are either

accepted based on initial scores or short-listed for further testing, k, are economic substitutes,

regardless of score distributions. In Section 5, we show that u and the number of applicants short-

listed for additional testing, z, are also economic substitutes.
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5. The Informativeness of the Test

In this section, we examine how the informativeness of the test affects the optimal policy. The

informativeness of the test is measured by variance. We show how the optimal policy changes when

the test becomes more informative. The proof, which has strong intuitive appeal, is outlined at the

end of this section.

To investigate how the informativeness of the test affects the optimal policy, we need to first

define what is meant by informativeness. A natural option is to use the variance σ2 of Su+i. To see

this, we first expand the conditional variance:

Var(g(Xi1,Xi2) |Xi1) =E
[
ϵ2i |Xi1

]
−E

[
ϵ′2i |Xi1

]
. (9)

The derivation of (9) is provided in Appendix C. By (9) and the law of total expectations, we

have σ2 =E [Var(g(Xi1,Xi2) |Xi1)] =Var(ϵi)−Var(ϵ′i). If the test score becomes more informative,

then the regression function g(Xi1,Xi2) has more power for predicting the qualification Yi. This

implies that the error variance Var(ϵ′i) should be smaller, and therefore σ2 should be larger. The

conditional variance (9) can also be interpreted as the reduction in the mean squared error (MSE)

in sequential ANOVA. This reduction in MSE quantifies the degree to which the test score explains

the variability of the qualifications, or alternatively the reduction in error achieved by testing.

Motivated by these observations, we say that the test becomes more informative when σ2 is larger.

To better understand how the variance can change, let us consider the multivariate normal model

in Example 1. We have derived the regression g(Xi1,Xi2) = f(Xi1) + γ2ϵ
′′
i . The variance of γ2ϵ

′′
i is

γ2
2(1− ρ2x1,x2)σ

2
x2
, where ρx1,x2 = σx1,x2/(σx1σx2) is the Pearson correlation coefficient of Xi1 and

Xi2. The Pearson correlation coefficient of Xi2 and Yi is ρx2,y = σx2,y/(σx2σy). We keep the diagonal

of the covariance matrix Σ unchanged and assume that g(·, ·) is also increasing for the sake of

simplicity. The partial derivatives of the variance of γ2ϵ
′′
i with respect to σx2,y and σx1,x2 are

∂Var(γ2ϵ
′′
i )

∂σx2,y

= 2γ2 ≥ 0 and
∂Var(γ2ϵ

′′
i )

∂σx1,x2

=−2γ1γ2 ≤ 0.

If the test score and the qualification are more correlated, i.e., ρx2,y is closer to one, σ2 =

Var(g(Xi1,Xi2) |Xi1) = Var(γ2ϵ
′′
i ) is larger; similarly if the test score and the initial score are less

correlated, i.e., ρx1,x2 is closer to zero, σ2 is larger. In summary, in the multivariate normal model,

the test is more informative if the test score is more correlated to the qualification or if it is less

correlated to the initial score. The former indicates a boost in the predictive accuracy of the test

score on its own, and the latter indicates an increase in the amount of new information provided

by the test.

The random variable Su+i can be expressed as a function of its mean and variance:

Su+i = µu+i +σεu+i, i= 1,2, . . . , z, (10)
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where εi ∼ (0,1) are i.i.d. and independent of X1. Let ϕi(·) be the probability density function

(PDF) of the error εi. We present the main result in this section.

Theorem 2. Suppose that ϕi(εi) = ϕi(−εi) for all εi ≥ 0. For Problem (P1), when the test result

becomes more informative, u∗ is smaller, and both z∗ and k∗ are larger.

The condition in the theorem imposes a symmetry assumption on the error distribution. Sym-

metric errors, such as Gaussian errors, are widely adopted in the literature (see, e.g., Bickel 1982,

Chae et al. 2019) due to their substantial computational and theoretical benefits. The multivariate

normal model in Example 1 satisfies this symmetry condition. For many non-symmetric models,

such as linear regressions with log-normal responses, power transform techniques like Box–Cox

transformation (Box and Cox 1964) can be applied to achieve symmetry.

To show Theorem 2, a standard approach is to show that the objective function of Problem (P1)

is supermodular in (σ,−u,k) and the constraint set is a lattice. This is a challenging undertaking

because the constraint set is not a lattice, the prediction model (2) is general, and the parameter

σ2 is associated with the distributions of all z non-identical random variables Su+i. There are two

important ideas in our proof.

First, we change the decision variable z to k−u, where k is the total number of applicants who

are either accepted solely based on initial scores or short-listed for additional testing. We then

relax the range of k from {u,u+1, . . . , n} to {0,1, . . . , n}, and replace z in the objective function

by (k−u)+. The redefined problem is

max
u∑

i=1

µi − c(k−u)+ +E
[
F(k−u)+(u,S(u, (k−u)+))

]
s.t. −u∈ {−n,−n+1, . . . ,0} ,

k ∈ {0,1, . . . , n} .

It can be shown that the new formulation is equivalent to the original one and the feasible region

is a lattice.

To show the theorem, we prove that the new objective function is pairwise supermodular in

(σ,−u,k). To illustrate the second important idea in our proof, we use the proof of the supermod-

ularity in (σ,k) as an example. Based on Lemma 2, the marginal value of k has the following form

(for ease of exposition, we only consider the case k > u here):

E [Fk−u(u,S(u,k−u))]−E [Fk−1−u(u,S(u,k− 1−u))] =E
[
(Sk − Ŝ[k−u](u,k−u,k−u))+

]
, (11)

where Ŝ[k−u](u,k−u,k−u) is the (k−u)th order statistic of the random vector Ŝ(u,k−u,k−u) =
(Su+1, Su+2, . . . , Sk−1,∆G(u+1− d),∆G(u+2− d), . . . ,∆G(k− d)), which is defined in Section 4.
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That is, we transform the difference of two maximization problems into a much simpler convex

function of the random variable Sk subtracting an order statistic. Because only the mean-variance

information for each random variable is available, we further replace each Su+i with the linear form

µu+i +σεu+i (see (10)) and obtain

E
[
(Sk − Ŝ[k−u](u,k−u,k−u))+

]
=E

[
(µk +σεk − Ŝ[k−u](u,k−u,k−u))+

]
. (12)

We then show that (12) is increasing in σ.

The proof of the supermodularity in (σ,−u) is similar. The marginal value of −u is

E [Fk−u(u,S(u,k−u))]−E [Fk−u−1(u+1,S(u+1, k−u− 1))]

= E
[
max

{
Su+1, Ŝ[k−u](u,k−u,u+1)

}]
, (13)

where Ŝ[k−u](u,k−u,u+1) is the (k−u)th order statistic of the random vector Ŝ(u,k−u,u+1)=

(Su+2, Su+3, . . . , Sk,∆G(u+1−d),∆G(u+2−d), . . . ,∆G(k−d)). The derivation of (13) also relies

on Lemma 2.

Theorem 2 shows that if the test result is more informative, the firm should short-list more

applicants for additional testing and accept fewer based solely on their initial scores. In addition,

the total number of applicants who are either accepted based on initial scores or short-listed for

further testing is larger (i.e., the number of applicants rejected based on initial scores is smaller).

This, interestingly, means that when z∗ > 0, the optimal number of short-listed applicants is more

sensitive to the changes in the informativeness of the test than the optimal number of applicants

accepted in the first stage .

6. Two Suboptimal Policies

In this section, we consider two formulations that correspond to two commonly adopted policies

in practice and are special cases of Problem (P1). In the first formulation, the firm must make

accept/reject decisions solely based on the initial scores, which corresponds to the screen-to-hire

policy; that is,

(Pu
0 ) max

∑
i∈U

f(xi1)−G(|U|− d)

s.t. U ⊂ {1,2, . . . , n} .

In the second formulation, the firm must conduct further testing before an applicant can be

accepted, which corresponds to the test-to-hire policy; that is,

(Pz
0 ) max − c|Z|+E

[
max
H⊂Z

{∑
i∈H

S′
i(xi1)−G(|H|− d)

}]
s.t. Z ⊂ {1,2, . . . , n} .
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We summarize the optimal policies of determining U for Problem (Pu
0 ) and Z for Problem (Pz

0 )

in the following proposition.

Proposition 1. (i) For Problem (Pu
0 ), there exists a cutoff such that the initial scores of all of

the rejected applicants must be lower than the cutoff; (ii) For Problem (Pz
0 ), there exists a cutoff

such that the initial scores of all of the applicants not short-listed must be lower than the cutoff.

For Problem (Pz
0 ), Proposition 1 requires Assumption 1 to hold. The fact that cutoff policies

may not be optimal in general has been discussed in the literature. In the literature on screening,

for example, the monotone likelihood ratio (MLR) property has been identified as a sufficient

condition for the optimality of a cutoff policy (see, e.g., Lagziel and Lehrer 2019, Koren 2024).

The MLR property, like Assumption 1, implies positive regression dependence. Whether optimal

or not, cutoff policies serve as a useful tool for applicant selection, as they are straightforward to

implement and promote a level playing field for transparent selection procedures.

Based on Proposition 1, we respectively reformulate Problems (Pu
0 ) and (Pz

0 ) as follows:

(Pu
1 ) max

u∑
i=1

µi −G(u− d)

s.t. u∈ {0,1, . . . , n} ,

and

(Pz
1 ) max − cz+E [Fz(0,S(0, z))]

s.t. z ∈ {0,1, . . . , n} ,

where µi = f(x[i]1), and Fz(·, ·) is as defined in (7). Let u′ and z′ denote the largest optimal

solutions of Problems (Pu
1 ) and (Pz

1 ), respectively. Problem (Pu
1 ) is easy to solve because the

objective function is discrete concave in u. In Section 7, we provide an explicit formula for u′. We

can also show that Problem (Pz
1 ) is a discrete concave optimization. Specifically, we show that

E [Fz(u,S(u, z))] is discrete concave in z under the usual stochastic ordering condition. For two

random variables V and W , if P(V > x)≥ P(W >x) for all x∈R, then V is said to be larger than

W in the usual stochastic order, denoted by V ≥stW (Shaked and Shanthikumar 2007).

Lemma 4. If Su+1 ≥st Su+2 ≥st · · · ≥st Sn, then E [Fz(u,S(u, z))] is discrete concave in z and has

decreasing differences in (u, z).

To see that the usual stochastic ordering condition holds in our setting, recall that Si = µi+σεi,

where µi decreases with i and εi are i.i.d. across i. This implies that Si− (µi−µj) and Sj are equal

in distribution, and thus, P(Si ≥ x) = P(Si − (µi − µj) ≥ x− (µi − µj)) = P(Sj ≥ x− (µi − µj)) ≥
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P(Sj ≥ x) for any x ∈ R and j ≥ i. The concavity property is useful for computing the optimal

policy, but it is also needed to prove Theorem 3. The property of decreasing differences implies that

the number of applicants hired based solely on their initial scores, u, and the number of applicants

short-listed for further testing, z, are economic substitutes. It can also be shown that when the test

becomes more informative, the firm adopting the test-to-hire policy will short-list more applicants

for further testing.

We now present the main result in this section, which establishes the connections among the

optimal policy, the screen-to-hire policy, and the test-to-hire policy.

Theorem 3. (i) u∗ ≤ u′ ≤ u∗ + z∗; (ii) If z∗ > 0, then u∗ + z∗ ≤ z′.

Relative to the screen-to-hire policy, the firm adopting the optimal policy would accept fewer

applicants in the first stage (i.e., u∗ ≤ u′), because it also accepts applicants in the second stage.

Furthermore, because it plans to accept only some of the short-listed applicants, we naturally

expect u′ ≤ u∗ + z∗. Part (ii) is obvious only in hindsight. Under the test-to-hire policy, the firm

short-lists more applicants than u∗ + z∗ because even some of the top u∗ applicants based on

their initial scores may be rejected in the second stage, while under the optimal policy, the top

u∗ applicants receive offers. The firm needs to increase the number of short-listed applicants to

account for that possibility. Parts (i) and (ii) of the theorem together imply that if z∗ > 0, then

z′ ≥ u∗+ z∗ ≥ u′, or if z′ <u′, then z∗ = 0. This means that if z′ <u′, then the screen-to-hire policy

is actually optimal.

Theorems 3 can be viewed in terms of the informativeness of the test. Specifically, when the

informativeness of the test is extremely low, the firm will not conduct any testing, and so the

screen-to-hire policy is optimal. In this case, we have u∗ = u′, z∗ = 0, and k∗ = u∗ + z∗ = u′. As

the informativeness increases, according to Theorem 2, u∗ decreases and k∗ increases. Therefore,

we have u∗ ≤ u′ ≤ u∗ + z∗. When the cost of testing is sufficiently low, the firm will short-list all

of the applicants for the second stage, and the test-to-hire policy is optimal. In this scenario, we

have u∗ = 0, z∗ = z′, and k∗ = z′. Again based on Theorem 2, as testing becomes less informative,

u∗ increases, and k∗ and z′ decrease. Under the optimal policy, u∗ is positive, and under the test-

to-hire policy, no applicants are accepted in the first stage. Suppose that we optimize k and u

sequentially. The quantity u∗+z∗ is the optimal k when u= u∗ and z′ is the optimal k when u= 0.

We have u∗ + z∗ ≤ z′ because k and u are substitutes (Lemma 3).

We also visualize the result for Theorem 3 in Figure 2. The optimal policy (u∗, z∗) is located

within the parallelogram marked by triangles. This reduced search region can be much smaller

than the feasible region represented by the triangular area marked with dots, which is useful

computationally. Take AACSB-accredited master’s programs. For the 2018 to 2024 period, the
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Figure 2 Search Region of the Optimal Policy (u∗, z∗)
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Note. The parallelogram region marked by triangles denotes the reduced search region based on Theorem 3, and the

triangular region marked by dots denotes the whole feasible region.

average acceptance rate (i.e., the percentage of applicants who are offered admission by a school) is

approximately 42% (AACSB 2024). Assuming that most programs adopt the screen-to-hire policy,

we have u′ ≈ 0.42n. If we set the testing rate to be 60%, i.e., z′ = 0.6n, the reduced search region

only accounts for 15% of the feasible region. In Section 7, we conduct approximations within this

reduced search region.

7. Approximations

In this section, we develop methods for computing the optimal policy (u∗, z∗) approximately. We

start by proposing an efficient approximation for the objective function of Problem (P1). We

then reduce the search region using the results established in Section 6. Finally, we evaluate the

performance of our method and compare the performance of the two suboptimal policies against

that of the optimal policy numerically.

7.1. Approximating the Objective Function

To approximate the objective function of Problem (P1), we focus on the expected value of the

second-stage problem, E [Fz(u,S(u, z))]. According to Lemma 2, this expected value can be itera-

tively expressed as the sum of z convex functions involving order statistics. One possible approach

is to directly approximate these order statistics. For example, we can apply the bounds on the

expected value of order statistics provided by Arnold and Groeneveld (1979) and Bertsimas et al.

(2006), which only require the mean-variance information for general distributions. In this section,

however, we propose an alternative method based on concentration bounds to approximate the

second-stage problem, which is shown to be efficient and accurate in our context.
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As alluded to earlier, we iteratively expand Fz(u,S(u, z)) from the zth element to the first in

S(u, z) as follows:

Fz(u,S(u, z)) = (Su+z − Ŝ[z](u, z, z))
+ +Fz−1(u,S(u, z− 1))

= (Su+z − Ŝ[z](u, z, z))
+ +(Su+z−1 − Ŝ[z−1](u, z− 1, z− 1))+ +Fz−2(u,S(u, z− 2))

· · ·

=
z∑

i=1

(Su+i − Ŝ[i](u, i, i))
+ −G(u− d), (14)

where Ŝ[i](u, i, i) is the ith order statistic or the median of the (2i− 1)-dimensional random vector

(Su+1, Su+2, . . . , Su+i−1,∆G(u+1− d),∆G(u+2− d), . . . ,∆G(u+ i− d)).

Next, we let S̃(u, z) = (S̃u+1, S̃u+2, . . . , S̃u+z) = (g(Xi1,Xi2))i∈Z , where g(Xi1,Xi2) is the regression

function as defined in the prediction model (2). The random vector S̃(u, z) represents the unsorted

version of S(u, z) with the initial scores being random and X[u]1 ≥Xi1 ≥X[u+z]1 for all i∈Z. In a

slight abuse of notation, we continue to use Ŝ[i](u, i, i) to denote the median of the random vector

(S̃u+1, S̃u+2, . . . , S̃u+i−1,∆G(u+ 1− d),∆G(u+ 2− d), . . . ,∆G(u+ i− d)). According to (14), the

objective function of Problem (P1) can be expressed as follows:

u∑
i=1

µi − cz+E [Fz(u,S(u, z))] =
u∑

i=1

µi − cz−G(u− d)+E
[
Gz(u, S̃(u, z)) |X1 = x1

]
, (15)

where

Gz(u, S̃(u, z)) =
z∑

i=1

(S̃u+i − Ŝ[i](u, i, i))
+. (16)

In addition, for two sequences of positive real numbers {aN} and {bN}, we say that aN and bN have

the same order of growth as N changes, denoted by aN ≍ bN , if there exist two positive constants

τ1 < τ2 such that τ1 ≤ aN/bN ≤ τ2 for all N . With these notations, the following theorem shows

that Gz(u, S̃(u, z)) is close to its conditional mean E[Gz(u, S̃(u, z)) |X1] with high probability.

Theorem 4. Assume that ∆G(·) is bounded. For d≍ n and all z ∈ {1, . . . , n−u},

P

∣∣∣∣∣ Gz(u, S̃(u, z))

E
[
Gz(u, S̃(u, z)) |X1

] − 1

∣∣∣∣∣≥ log(z)√
z

≤ C1

log(z)
, (17)

where C1 is a positive constant that does not depend on z, n, and d.

The boundedness condition on ∆G(·) means that the marginal cost of hiring an additional

applicant is bounded. This condition is easily met in practice; for example, the penalty cost

with linear marginal underage and overage costs, given by G(q − d) = cu(q − d)− + co(q − d)+,

clearly satisfies this condition. Given an input data X1 = x1 and for any sample of test scores
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(X(u+1)2,X(u+2)2, . . . ,X(u+z)2), we use Gz(u, S̃(u, z)(ω)) to approximate E[Gz(u, S̃(u, z)) |X1 = x1]

in the objective function (15). The approximation significantly simplifies the computation, and

according to Theorem 4, it does so without incurring too much error with high probability. In

addition, by sorting S̃(u, z)(ω) in descending order, Lemma 4 shows that the approximated objec-

tive function is discrete concave in z. This allows us to efficiently find the optimal solution to the

approximated problem.

Figure 3 The Single-Sample Approximation Relative to the Monte Carlo Simulations
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Note. We set u= 0 and n= 1,000. The results are based on 600 samples of initial scores.

The side-by-side boxplots in Figure 3 evaluate the approximations of E[Gz(u, S̃(u, z)) |X1 = x1]

across different levels of σ2, short-list sizes z, and hiring targets d. Let V SS(x1) represent the value
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obtained from the single-sample approximation Gz(u, S̃(u, z)(ω)), and let V MC(x1) denote the value

obtained from the Monte Carlo (MC) simulations. The y-axis is the relative difference between the

two approximations, calculated as (V SS(x1)−V MC(x1))/V
MC(x1). From the figure, we can see that

the single-sample approximation is close to the MC benchmark in most cases.

7.2. Approximating under the Reduced Search Region

We now propose a simple algorithm to compute the optimal policy approximately, which is based

on the theoretical results obtained in Sections 6 and 7.1. First, according to Theorem 3, the optimal

policy (u∗, z∗) is in the reduced search region

R= {(u, z) : u≤ u′ ≤ u+ z ≤ z′}
⋃

{(u′,0)} ,

where the optimal solution u′ of Problem (Pu
1 ) (screen-to-hire) can be found by the following simple

formula:

u′ =

{
max{i : µi ≥∆G(i− d)} if µ1 ≥∆G(1− d),

0 otherwise .
(18)

As it is challenging to compute E [Fz(u,S(u, z))] exactly, we also resolve to approximation when

computing the test-to-hire policy. In particular, we use the single-sample approximation in Sec-

tion 7.1 to approximate E[Gz(0, S̃(0, z)) | X1 = x1] = E [Fz(0,S(0, z))] + G(−d) in the objective

function of Problem (Pz
1 ), and z′ is replaced by the optimal solution of the approximation for

Problem (Pz
1 ), denoted by ẑ′. Finally, we approximate the objective function (15) of Problem (P1)

using the single-sample approximation and search for the optimal policy within the approximated

search region R̂= {(u, z) : u≤ u′ ≤ u+ z ≤ ẑ′}⋃{(u′,0)}. Algorithm 1 summarizes the procedure.

Algorithm 1

Input: Initial scores x1

Step 1. Determine the search region

1. Use (18) to compute u′.

2. Approximate E[Gz(0, S̃(0, z)) |X1 = x1] in the objective function of Problem (Pz
1 ) using the

single-sample approximation in Section 7.1. Compute the optimal solution ẑ′.

3. Set the search region R̂= {(u, z) : u≤ u′ ≤ u+ z ≤ ẑ′}⋃{(u′,0)}.
Step 2. Approximate Problem (P1)

1. Approximate E[Gz(u, S̃(u, z)) |X1 = x1] in the objective function of Problem (P1) using the

single-sample approximation in Section 7.1.

2. Search for the optimal solution (û∗, ẑ∗) within the region R̂.

Output: The approximated policy (û∗, ẑ∗)
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7.3. Numerical Studies

In this section, we evaluate the performance of Algorithm 1 and compare the performance of the

optimal policy with those of the screen-to-hire and test-to-hire policies.

Parameters. The parameter setting is the same as the one used in the numerical example in

Section 7.1. Specifically, we consider the multivariate normal model presented in Example 1 with

mean µ= (µx1 , µx2 , µy) = (50,−,60)5 and the covariance matrix

Σ=

 σ2
x1

σx1,x2 σx1,y

σx2,x1 σ2
x2

σx2,y

σy,x1 σy,x2 σ2
y

=

352 100 150
100 252 σx2,y

150 σx2,y 302

 .

We adjust the parameter σ2 by changing σx2,y (see the relationship of σ2 and σx2,y discussed in

Section 5). Other parameters are c= 5 and G(q− d) = 55(q− d)− +60(q− d)+.

Figure 4 The Performance of Algorithm 1 Relative to the Monte Carlo Simulations
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Note. The results are averaged based on 600 samples of initial scores.

We first evaluate the performance of Algorithm 1 (referred to as “Algo1”) by comparing its

performance gap against the MC simulation results. The expected reward for each approach i,

where i=Algo1,MC, is denoted as Ri(x1). The performance gap for Algorithm 1 relative to the

MC simulation results is defined as (RAlgo1(x1)−RMC(x1))/R
MC(x1). The comparison is conducted

across three levels of test informativeness, specifically σ2 = 52,152,252, for varying sizes of applicant

pools, n = 100,200, . . . ,600, and under three hiring targets, d = 0.1n,0.4n,0.7n. As illustrated

in Figure 4, Algorithm 1 demonstrates strong performance across different parameter settings.

Therefore, in the following, we present the results from Algorithm 1 as the optimal values, rather

than relying on the more cumbersome MC simulations.

Next, we compare the optimal policy with the screen-to-hire and test-to-hire policies. The

expected rewards and performance gaps for these policies (relative to the optimal policy) are defined

5 Because µx2 does not play a role here, we suppress it as “−”.
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Figure 5 The Performance of the Two Suboptimal Policies Relative to the Optimal Policy
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Note. The results are averaged based on 600 samples of initial scores.

similarly to the above. The comparison is again made across three levels of test informativeness,

i.e., σ2 = 52,152,252, for different sizes of applicant pools, n= 600,650, . . . ,1,000, and under three

hiring targets, d= 0.1n,0.4n,0.7n. Figure 5 shows that the test-to-hire policy eventually outper-

forms the screen-to-hire policy as the test becomes more informative, which is expected. In our

numerical studies, the performance gap between the suboptimal policies and the optimal policy can

be as much as 30%. It is worth noting that the performance gaps do not diminish as n increases,
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which suggests that the screen-to-hire and test-to-hire policies do not converge to the optimal

policy, even as the applicant pool grows infinitely large.

8. Concluding Remarks

In this paper, we develop a model framework for business scenarios in which firms seek to select

applicants from an applicant pool to fill multiple identical job positions. Firms can accept applicants

based solely on their initial scores in the first stage and can also short-list them for additional

costly testing to gain more information about them before accept/reject decisions are made. We

show that under the optimal policy, the applicants are categorized into three groups based on

their initial scores: high-scoring applicants are accepted, low-scoring ones are rejected, and those

with intermediate scores are short-listed for further testing. The sizes of the groups depend on

the informativeness of the signals generated by the tests: as the tests become more informative,

fewer applicants are accepted and fewer are rejected based solely on their initial scores, and more

proceed to the second stage for further testing. We also discuss two policies commonly observed in

practice. The two policies are easier to compute than the optimal policy, and although suboptimal,

they provide bounds that are useful for computing the optimal policy. The optimal policy is hard

to compute exactly. We develop innovative ideas to compute it approximately, which allows us

to compare the performance of the two suboptimal policies against that of the optimal policy

numerically.

We believe that this research topic can motivate further studies. For example, in our analysis, we

assume a variable cost of testing. There are situations where the cost of testing is a fixed cost and

there is a capacity constraint on the number of applicants that can be tested. In this case, it can

be shown that the optimal policy is still characterized by two cutoffs, but how the informativeness

of the test affects the optimal policy is an open question. Further, our study focuses entirely on the

interest of the firm but neglects the implications for applicants. A lengthy recruiting process is not

only costly for firms but also for applicants. According to a recent study by Barclays, the average

UK graduate attends over three interviews before receiving an offer (Barclay Simpson n.d.). Our

analysis suggests that compared to the test-to-hire policy, the optimal policy benefits applicants as

a whole because some applicants are accepted without going through costly testing. Compared to

the screen-to-hire policy, however, the opposite is true. A relevant extension to our model would be

to incorporate the strategic behavior of applicants, such as in Koren (2024). It is unclear what the

optimal policies would be if the design of the recruiting process influences the number and the types

of applicants the firm receives, and we consider this an important topic for future investigation.
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Appendix A: Discussion on Modeling Choice

In Assumption 1, we assume that the error difference ϵi − ϵ′i is independent of the initial score Xi1. In this

section, we show that this assumption can be relaxed. Specifically, we consider the following heteroskedastic

regression model (Neumeyer and Dette 2007):

g(Xi1,Xi2) |Xi1 = f(Xi1)+ (ϵi − ϵ′i) |Xi1 = f(Xi1)+σ(Xi1)ϵ
′′
i , (A1)

where ϵ′′i is independent of Xi1 with a mean of zero and a variance of one. The conditional variance is given

by Var(g(Xi1,Xi2) |Xi1) = σ2(Xi1), and hence the regression (A1) does not require conditional homoskedas-

ticity, a standard component in classical linear regression models (Hayashi 2011). For ease of exposition, we

further assume that f(·) is strictly increasing and both f(·) and σ(·) are differentiable.

We first provide a sufficient condition on σ(·) for the validity of the two-cutoff optimal policy in Theorem 1.

Proposition A1. Theorem 1 remains true if, for any i∈ {1,2, . . . , n} and xi1 ∈R, σ(xi1) satisfies

sup
x∈R

1

E [ϵ′′i | ϵ′′i <x]
≤−σ

′(xi1)

f ′(xi1)
≤ inf

x∈R

1

E [ϵ′′i | ϵ′′i ≥ x]
.

The denominators E [ϵ′′i | ϵ′′i <x] in the lower bound and E [ϵ′′i | ϵ′′i ≥ x] in the upper bound represent the

average errors when applicant i is rejected or accepted based on a threshold f(xi1) + σ(xi1)x, respectively.

The condition in Proposition A1 requires that the rate of change of σ(xi1) relative to that of f(xi1) is

bounded by the reciprocals of these average errors.

For Theorem 2, because the conditional variance σ2(Xi1) varies across different realizations of Xi1, it

is straightforward to redefine the informativeness of the test by using the expectation of σ2(Xi1). More

sophisticated approaches may also be possible, and we leave these for future research.

For Theorem 3, we need to impose the usual stochastic ordering condition on Si to ensure that Lemma 4

holds. To that end, we assume that g(Xi1,Xi2) is positively regression dependent on Xi1, as discussed in

Section 3. This condition is equivalent to the usual stochastic ordering condition on Si.

Finally, for the condition in Proposition A1, the lower bound is negative while the upper bound is positive.

It follows that the constant variance σ2 under Assumption 1(ii) also meets this condition. Furthermore,

Assumption 1 implies the positive regression dependence condition. Therefore, Assumption 1 is a special

case of the heterogeneity in regression (A1).

Appendix B: Proofs for the Main Theoretical Results

Proof of Lemma 1. Define

J(xi1) =ES′
i
(xi1)

[
max

0≤h≤|Z|

{
h∑

j=1

S′
[j](x1,Z)−G(|U|+h− d)

}∣∣∣∣∣(S′
j(xj1))j∈Z\{i}

]
,

where the subscript S′
i(xi1) in the expectation operator means that the expectation is taken with respect

to S′
i(xi1). Given a realization (s′j(xj1))j∈Z , we first show that the maximization inside the conditional

expectation is increasing in s′i(xi1) with a slope of less than one. Because

h∑
j=1

s′[j](x1,Z) =max

{
h∑

k=1

s′jk(xjk1) : j1 < j2 < · · ·< jh, jk ∈Z, ∀k ∈ {1,2, . . . , h}
}
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is the pointwise maximum of |Z|!/(h!(|Z| − h)!) linear functions (Boyd and Vandenberghe 2004, Exam-

ple 3.6), each increasing in s′i(xi1) with a slope of less than one,
∑h

j=1 s
′
[j](x1,Z) is increasing in s′i(xi1)

with a slope of less than one. Because G(|U| + h − d) does not depend on s′i(xi1), the maximization

max
0≤h≤|Z|

{∑h

j=1 s
′
[j](x1,Z)−G(|U|+h− d)

}
is the maximum of |Z|+1 increasing functions of s′i(xi1) with a

slope of less than one. Then, by the monotonicity of conditional expectation, J(xi1) is increasing in s′i(xi1)

with a slope of less than one. This further implies that E(S′
j
(xj1))j∈Z\{i} [J(xi1)] has the same property. Finally,

S′
i(xi1) can be written as S′

i(xi1) = f(xi1)+ σε′i, where the distribution of ε′i is not related to xi1. It follows

that E(S′
j
(xj1))j∈Z\{i} [J(xi1)] is increasing in xi1 with a slope of less than ∇f(xi1). □

Proof of Theorem 1. To show the two-cutoff policy, it suffices to show that if it is optimal to accept

applicant i, then there exists an optimal policy in which applicant j with xj1 ≥ xi1 is accepted; if it is optimal

to reject applicant i, then there exists an optimal policy in which applicant j with xj1 ≤ xi1 is rejected.

We first show the first half of the statement. It is obvious that accepting j and rejecting i, ceteris paribus,

generates a f(xj1)−f(xi1) higher reward than accepting i and rejecting j. Therefore, we only need to verify

that accepting j and short-listing i for further testing, ceteris paribus, also generates a higher reward than

the other way around. Given a set U0 of applicants being accepted with i, j /∈ U0, and a set Z0 of all applicants

being short-listed for further testing with i, j /∈Z0, using Lemma 1, we have

f(xj1)− f(xi1)≥E

[
max

0≤h≤|Z0∪{j}|

{
h∑

k=1

S′
[k](x1,Z0 ∪{j})−G(|U0 ∪{i} |+h− d)

}]

−E

[
max

0≤h≤|Z0∪{i}|

{
h∑

k=1

S′
[k](x1,Z0 ∪{i})−G(|U0 ∪{j} |+h− d)

}]
.

This implies that accepting j and short-listing i is no worse than accepting i and short-listing j. In summary,

it is optimal to accept j.

We next show the second half of the statement. Because rejecting j and accepting i, ceteris paribus,

generates a f(xi1)−f(xj1) higher reward than rejecting i and accepting j, we only need to show that rejecting

j and short-listing i for further testing, ceteris paribus, also generates a higher reward than the other way

around. Using the same notations as above and Lemma 1, we have

E

[
max

0≤h≤|Z0∪{i}|

{
h∑

k=1

S′
[k](x1,Z0 ∪{i})−G(|U0|+h− d)

}]

≥ E

[
max

0≤h≤|Z0∪{j}|

{
h∑

k=1

S′
[k](x1,Z0 ∪{j})−G(|U0|+h− d)

}]
.

This implies that rejecting j and short-listing i is no worse than rejecting i and short-listing j. In summary,

it is optimal to reject j. □

Proof of Lemma 2. Without loss of generality, we let u = 0. When z = 1, we have F1(0, s(0,1)) =

max{s1 −G(1− d),−G(−d)} = (s1 −∆G(1 − d))+ − G(−d), which clearly satisfies (8). Therefore, in the

sequel, we assume that z > 1. Let

H(h) =

h∑
j=1

s[j](0, z)−G(h− d),

which is discrete concave in h. Recall that h∗ is the largest maximizer of (7). Then, s[h∗](0, z) is the smallest

element in the optimal score set, and we set s[h∗](0, z) =∆G(1−d) if h∗ = 0. The idea of the proof is to first
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show that si ≥ s[h∗](0, z) if and only if si ≥ ŝ[z](0, z, i), and then conduct the decomposition based on the

relationship between si and s[h∗](0, z). Note that s[h∗](0, z) is a function of s(0, z) ∈ Rz, whereas ŝ[z](0, z, i)

is a function of s−i(0, z)∈Rz−1. We proceed in two steps.

Step 1 (si ≥ s[h∗](0, z) if and only if si ≥ ŝ[z](0, z, i)). If h
∗ = 0, then H(0)>H(1) implies that G(1−

d)−G(−d)> s[1](0, z). Thus, s[h∗](0, z) =∆G(1− d) is the zth largest element in ŝ(0, z, i), i.e., s[h∗](0, z) =

ŝ[z](0, z, i). If h
∗ ≥ 1, we assume that si = s[k](0, z) for some k ∈ {1,2, . . . , h∗}, and sequentially prove necessity

and sufficiency.

“Only if” part: Because s[k](0, z)≥ s[h∗](0, z) and H(·) is discrete concave, we have

H(k− 1)≤H(k)≤ · · · ≤H(h∗),

where the first inequality implies that si = s[k](0, z) ≥ G(k − d) − G(k − 1 − d) = ∆G(k − d). Therefore,

si ≥∆G(h−d) for h= k, k− 1, . . . ,1. Because we also have si ≥ s[h](0, z) for h= k+1, k+2, . . . , z, at least z

elements in ŝ(0, z, i) are smaller than si, which implies that si ≥ ŝ[z](0, z, i).

“If” part: Recall that ŝj is the jth element in ŝ(0, z, i) = (ŝ1, ŝ2, . . . , ŝ2z−1) = (s−i(0, z),∆G(1−d),∆G(2−
d), . . . ,∆G(z− d)). Let n1 and n2 be the numbers of ŝj ’s with ŝj ≤ si that are from s−i(0, z) and (∆G(1−
d),∆G(2− d), . . . ,∆G(z− d)), respectively. Then, si ≥ ŝ[z](0, z, i) implies that n1 +n2 ≥ z. By the definition

of n1, s[k](0, z) = si ≥ s[z−n1](0, z). Therefore, k ≤ z− n1 ≤ n2. In addition, because si ≥∆G(n2 − d) by the

definition of n2, we obtain

H(k)−H(k− 1) = si −∆G(k− d)≥ si −∆G(n2 − d)≥ 0,

which further implies that si ≥ s[h∗](0, z) because H(·) is discrete concave.

Step 2 (Decomposition). Let H̃(h) =
∑h

j=1 s̃[j](0, z)−G(h− d), where s̃[j](0, z) denotes the jth largest

element in s−i(0, z). We consider two cases.

Case 1. If si < s[h∗](0, z), then h∗ ∈ {0,1, . . . , z− 1}, and we have Fz(0, s(0, z)) =H(h∗) = H̃(h∗). Thus,

for h= h∗ +1, h∗ +2, . . . , z− 1 (if h∗ = z− 1, then no such h exists),

H̃(h∗) =H(h∗)>H(h)≥ H̃(h), (A2)

where the first inequality follows from the optimality of h∗, and the second inequality follows because s(0, z)

has one more element than s−i(0, z). Similarly, for h= 0,1, . . . , h∗,

H̃(h∗) =H(h∗)≥H(h) = H̃(h), (A3)

where the second equality follows because the largest h elements in s(0, z) are exactly the same as the largest

h elements in s−i(0, z) when h≤ h∗.

By (A2), (A3), and Step 1, we have

Fz(0, s(0, z)) =H(h∗) = Fz−1(0, s−i(0, z)) = (si − ŝ[z](0, z, i))
+ +Fz−1(0, s−i(0, z)),

which satisfies (8).
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Case 2. If si ≥ s[h∗](0, z), then h
∗ ∈ {1,2, . . . , z}. Expanding Fz(0, s(0, z)) yields

Fz(0, s(0, z)) =

h∗∑
j=1

s[j](0, z)−G(h∗ − d)

= si +

(
h∗∑
j=1

s[j](0, z)− si

)
−G(h∗ − d)

= si +

h∗−1∑
j=1

s̃[j](0, z)−G(h∗ − d)

= (si − ŝ[z](0, z, i))
+ +

h∗−1∑
j=1

s̃[j](0, z)+ ŝ[z](0, z, i)−G(h∗ − d), (A4)

where the third equality follows because si is among the h∗ largest elements in s(0, z), and after taking si out

from s(0, z), the remaining (h∗−1) largest elements in s(0, z) are exactly the h∗ largest elements in s−i(0, z).

The positive part in the last equality follows because si ≥ s[h∗](0, z) implies that si ≥ ŝ[z](0, z, i) according to

Step 1. It then suffices to show that

Fz−1(0, s−i(0, z)) =

h∗−1∑
j=1

s̃[j](0, z)+ ŝ[z](0, z, i)−G(h∗ − d). (A5)

To this end, let h′ ∈ {0,1, . . . , z− 1} be the optimal solution of Fz−1(0, s−i(0, z)). We first show that h′ ∈
{h∗ − 1, h∗} by contradiction.

If h′ >h∗, then

H(h′)−H(h∗) = si +

h′−1∑
j=1

s̃[j](0, z)−G(h′ − d)−
(
si +

h∗−1∑
j=1

s̃[j](0, z)−G(h∗ − d)

)

≥
h′∑

j=1

s̃[j](0, z)−G(h′ − d)−
(

h∗∑
j=1

s̃[j](0, z)−G(h∗ − d)

)
= H̃(h′)− H̃(h∗)

≥ 0,

which contradicts the optimality of h∗. Here, the first equality follows from the same argument for the third

equality in (A4), and the first inequality follows from the concavity of
∑h

j=1 s̃[j](0, z) in h.

If h′ <h∗ − 1, then

H(h′ +1)−H(h∗) =

h′+1∑
j=1

s[j](0, z)−G(h′ +1− d)−
(
si +

h∗−1∑
j=1

s̃[j](0, z)−G(h∗ − d)

)

≥ si +

h′∑
j=1

s̃[j](0, z)−G(h′ +1− d)−
(
si +

h∗−1∑
j=1

s̃[j](0, z)−G(h∗ − d)

)

≥
h′∑

j=1

s̃[j](0, z)−G(h′ − d)−
(

h∗−1∑
j=1

s̃[j](0, z)−G(h∗ − 1− d)

)
= H̃(h′)− H̃(h∗ − 1)

> 0,
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which contradicts the optimality of h∗. Here, the first inequality follows because
∑h′+1

j=1 s[j](0, z) = si +∑h′

j=1 s̃[j](0, z) if si ≥ s[h′+1](0, z) and
∑h′+1

j=1 s[j](0, z)> si+
∑h′

j=1 s̃[j](0, z) if si < s[h′+1](0, z), and the second

inequality follows from the convexity of G(·).
Therefore, we only need to consider two subcases: h′ = h∗ − 1 and h′ = h∗. Note that H(h∗)>H(h∗ +1)

implies that s[h∗+1](0, z)<∆G(h∗ +1− d), and H(h∗)≥H(h∗ − 1) implies that s[h∗](0, z)≥∆G(h∗ − d).

Subcase 2.1. If h′ = h∗ − 1, then s̃[h∗−1](0, z)≥ s[h∗](0, z)≥∆G(h∗ −d), where we set s̃[0](0, z) =∆G(1−
d). Therefore, s̃[h](0, z) ≥ ∆G(h∗ − d) for h = 1,2, . . . , h∗ − 1. If h∗ = z, then s̃[h](0, z) ≥ ∆G(h∗ − d) for

h = 1,2, . . . , z − 1, and if h∗ < z, then 0 < H̃(h∗ − 1)− H̃(h∗) = −s̃[h∗](0, z) + ∆G(h∗ − d), i.e., s̃[h](0, z) <

∆G(h∗−d) for h= h∗, h∗+1, . . . , z−1. Furthermore, we have ∆G(h−d)≥∆G(h∗−d) for h= h∗, h∗+1, . . . , z

and ∆G(h− d)≤∆G(h∗ − d) for h= 1,2, . . . , h∗ − 1. Therefore, we conclude that ∆G(h∗ − d) = ŝ[z](0, z, i).

It follows that

h∗−1∑
j=1

s̃[j](0, z)+ ŝ[z](0, z, i)−G(h∗ − d) =
h∗−1∑
j=1

s̃[j](0, z)−G(h∗ − 1− d) = Fz−1(0, s−i(0, z)),

which satisfies (A5).

Subcase 2.2. If h′ = h∗, then h∗ < z, and s̃[h∗](0, z) = s[h∗+1](0, z) < ∆G(h∗ + 1− d). In addition, 0 ≤
H̃(h∗) − H̃(h∗ − 1) = s̃[h∗](0, z) − ∆G(h∗ − d). Therefore, s̃[h](0, z), h = 1,2, . . . , h∗ − 1, and ∆G(h − d),

h= h∗ +1, h∗ +2, . . . , z, are all larger than s̃[h∗](0, z), and the remaining elements in ŝ(0, z, i) are less than

s̃[h∗](0, z). Therefore, we conclude that s̃[h∗](0, z) = ŝ[z](0, z, i). It follows that

h∗−1∑
j=1

s̃[j](0, z)+ ŝ[z](0, z, i)−G(h∗ −d) =
h∗∑
j=1

s̃[j](0, z)− s̃[h∗](0, z)+ ŝ[z](0, z, i)−G(h∗ −d) = Fz−1(0, s−i(0, z)),

which satisfies (A5).

By Cases 1 and 2, we complete the proof. □

For the proof of Lemma 3, we need the following auxiliary lemma. It shows that ŝ[z](u, z, i) is increasing in

z. Intuitively, as more applicants are short-listed for the second stage, the chances of those already short-listed

being hired decrease.

Lemma A1. For any i ∈ {1,2, . . . , z}, we have ŝ[z+1](u, z + 1, i)≥ ŝ[z](u, z, i) and ŝ[z+1](u, z + 1, z + 1)≥
ŝ[z](u, z, i).

Proof of Lemma A1. To show the first equality ŝ[z+1](u, z+1, i)≥ ŝ[z](u, z, i), instead of directly com-

paring the two (sampled) order statistics, we consider a truncated version of ŝ(u, z+1, i) by deleting su+z+1:

s̃= (s̃1, s̃2, . . . , s̃2z) = (s−i(u, z),∆G(u+1−d),∆G(u+2−d), . . . ,∆G(u+z+1−d)). Let s̃[z+1] be the (z+1)th

largest element in s̃. If we can show s̃[z+1] = ŝ[z](u, z, i), then the result follows from ŝ[z+1](u, z+1, i)≥ s̃[z+1].

We first list three observations about the two vectors ŝ(u, z, i) and s̃: (1) the largest z elements in ŝ(u, z, i)

must contain at least one element from (∆G(u+ 1− d),∆G(u+ 2− d), . . . ,∆G(u+ z − d)) because there

are only (z − 1) elements in s−i(u, z); (2) vector s̃ has one more element ∆G(u+ z + 1− d) than ŝ(u, z, i),

and all of their other elements are the same; and (3) ∆G(u+ z+1− d) is larger than all of the elements in

(∆G(u+1− d),∆G(u+2− d), . . . ,∆G(u+ z− d)).
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From these observations, it is evident that the largest (z +1) elements in s̃ comprise the top z elements

from ŝ(u, z, i) along with the element ∆G(u+ z+1− d), which ranks at least as the zth largest in s̃. Thus,

the result follows.

For the second equality ŝ[z+1](u, z + 1, z + 1) ≥ ŝ[z](u, z, i), we note that ŝ(u, z + 1, z + 1) has one more

element su+i than s̃, so ŝ[z+1](u, z+1, z+1)≥ s̃[z+1] = ŝ[z](u, z, i). □

Proof of Lemma 3. Take any i∈ {1,2, . . . , z}. Recall (8) in Lemma 2 that

Fz(u, s(u, z)) = (su+i − ŝ[z](u, z, i))
+ +Fz−1(u, s−i(u, z)). (A6)

Assign a large enough value to su+i such that su+i ≥ ŝ[z](u, z, i). Then, by Step 1 in the proof of Lemma 2,

su+i ≥ s[h∗](u, z), where h
∗ ∈ {1,2, . . . , z} is the largest maximizer of Fz(u, s(u, z)). Let s̃[j](u, z) denote the

jth largest element in s−i(u, z). Expanding Fz(u, s(u, z)) yields

Fz(u, s(u, z)) = max
0≤h≤z−1

{
su+i +

h∑
j=1

s[j+1](u, z)−G(u+1+h− d)

}

= su+i + max
0≤h≤z−1

{
h∑

j=1

s̃[j](u, z)−G(u+1+h− d)

}
= su+i +Fz−1(u+1, s−i(u, z)), (A7)

where the first equality follows because su+i ≥ s[h∗](u, z), and then the problem is equivalent to maximizing

over the remaining (z− 1) elements after su+i is included in the optimal score set.

By (A6) and (A7), we have

Fz−1(u, s−i(u, z)) = Fz−1(u+1, s−i(u, z))+ ŝ[z](u, z, i). (A8)

It is important to note that (A8) does not depend on the value of su+i. Plugging (A8) into (A6), we have

Fz(u, s(u, z))−Fz−1(u+1, s−i(u, z)) = (su+i − ŝ[z](u, z, i))
+ + ŝ[z](u, z, i) =max

{
su+i, ŝ[z](u, z, i)

}
, (A9)

which holds for all su+i ∈R.

Now, to show the submodularity, it suffices to show that Fk−u(u, s(u,k− u))−Fk−u−1(u+1, s(u+1, k−
u− 1)) is increasing in k. By (A9), we have

Fk−u(u, s(u,k−u))−Fk−u−1(u+1, s(u+1, k−u− 1)) =max
{
su+1, ŝ[k−u](u,k−u,1)

}
,

where ŝ[k−u](u,k−u,1) is the (k−u)th largest element in ŝ(u,k−u,1) = (s−1(u,k−u),∆G(u+1−d),∆G(u+
2− d), . . . ,∆G(k− d)). Similarly,

Fk+1−u(u, s(u,k+1−u))−Fk−u(u+1, s(u+1, k−u)) =max
{
su+1, ŝ[k+1−u](u,k+1−u,1)

}
,

where ŝ[k+1−u](u,k + 1 − u,1) is the (k + 1 − u)th largest element in ŝ(u,k + 1 − u,1) = (s−1(u,k + 1 −
u),∆G(u+1− d),∆G(u+2− d), . . . ,∆G(k+1− d)).

By Lemma A1, ŝ[k+1−u](u,k + 1 − u,1) ≥ ŝ[k−u](u,k − u,1), so max
{
su+1, ŝ[k+1−u](u,k+1−u,1)

}
≥

max
{
su+1, ŝ[k−u](u,k−u,1)

}
, which completes the proof. □
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Proof of Theorem 2. (i) Redefining Problem (P1). Replacing z with k−u in Problem (P1) yields

max

u∑
i=1

µi − c(k−u)+E [Fk−u(u,S(u,k−u))] (A10)

s.t. −u∈ {−n,−n+1, . . . ,0} ,

k ∈ {u,u+1, . . . , n} .

However, the constraint set of (−u,k), {−n,−n+1, . . . ,0}× {u,u+1, . . . , n} is not a lattice. To tackle this

issue, we redefine (A10) as follows:

max

u∑
i=1

µi − c(k−u)+ +E
[
F(k−u)+(u,S(u, (k−u)+))

]
(A11)

s.t. −u∈ {−n,−n+1, . . . ,0} ,

k ∈ {0,1, . . . , n} .

One can verify that (A10) and (A11) are equivalent, and the new constraint set is a lattice.

We next show that the objective function of (A11) is supermodular in (σ,−u,k). Let

ν(σ,−u,k) =E
[
F(k−u)+(u,S(u, (k−u)+))

]
.

(ii) Supermodularity in (σ,k). Without loss of generality, let u = 0. It suffices to show that ν(σ,0, k)−
ν(σ,0, k− 1) is increasing in σ for all k ∈ {1,2, . . . , n}. Part (ii) proceeds in three steps.

Step (ii)-1 (Decomposition). Applying (8) in Lemma 2 yields

ν(σ,0, k)− ν(σ,0, k− 1) =E
[
(Sk − Ŝ[k](0, k, k))

+ +Fk−1(0,S(0, k− 1))−Fk−1(0,S(0, k− 1))
]

=E
[
(Sk − Ŝ[k](0, k, k))

+
]
, (A12)

where Ŝ[k](0, k, k) is the kth order statistic of the random vector Ŝ(0, k, k) = (Ŝ1, Ŝ2, . . . , Ŝ2k−1) =

(S1, S2, . . . , Sk−1,∆G(1− d),∆G(2− d), . . . ,∆G(k− d)).

By (10), Si = σεi +µi, so

(A12) =E
[
(σεk +µk − Ŝ[k](0, k, k))

+
]
.

To highlight the dependence on σ, we slightly modify the notation and define S−k
i (σ) as the ith element

and S−k
[k] (σ) as the kth order statistic of Ŝ(0, k, k) when the standard deviation of Si is σ. Therefore, it is

equivalent to show that for any δ≥ 0,

E
[
((σ+ δ)εk +µk −S−k

[k] (σ+ δ))+
]
≥E

[
(σεk +µk −S−k

[k] (σ))
+
]
.

In the sequel, we use s−k
i (·) and s−k

[k] (·) to represent the realizations of S−k
i (·) and S−k

[k] (·), respectively.
Step (ii)-2 (Asymmetric marginal values around zero). The key idea in this step is that, given any

realization (ε1, ε2, . . . , εk−1) and a positive realization εk, we can show that

((σ+ δ)εk +µk − s−k
[k] (σ+ δ))+ − (σεk +µk − s−k

[k] (σ))
+

≥ (−σεk +µk − s−k
[k] (σ))

+ − (−(σ+ δ)εk +µk − s−k
[k] (σ+ δ))+. (A13)
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That is, the marginal value of σ for any positive realization εk is always larger than the marginal loss for its

negative counterpart −εk. Let us for this moment suppose that (A13) is true. Then,

E
[
((σ+ δ)εk +µk − s−k

[k] (σ+ δ))+
]

=

∫ 0

−∞
((σ+ δ)εk +µk − s−k

[k] (σ+ δ))+ϕk(εk)dεk +

∫ ∞

0

((σ+ δ)εk +µk − s−k
[k] (σ+ δ))+ϕk(εk)dεk

=

∫ ∞

0

((σ+ δ)(−εk)+µk − s−k
[k] (σ+ δ))+ϕk(εk)dεk +

∫ ∞

0

((σ+ δ)εk +µk − s−k
[k] (σ+ δ))+ϕk(εk)dεk

≥
∫ ∞

0

(−σεk +µk − s−k
[k] (σ))

+ϕk(εk)dεk +

∫ ∞

0

(σεk +µk − s−k
[k] (σ))

+ϕk(εk)dεk

= E
[
(σεk +µk − s−k

[k] (σ))
+
]
,

where the second equality follows from the symmetry of εk, and the inequality follows from (A13). Because

this holds for any realization (ε1, ε2, . . . , εk−1), we complete the proof for part (ii).

Step (ii)-3 (Verification of (A13)). We first show that the left-hand side of (A13) is positive:

((σ+ δ)εk +µk − s−k
[k] (σ+ δ))+ − (σεk +µk − s−k

[k] (σ))
+ ≥ 0. (A14)

If s−k
[k] (σ)≥min

{
σεk +µk, s

−k
[k] (σ+ δ)

}
, because εk ≥ 0, (A14) holds. So we consider the case when s−k

[k] (σ)<

min
{
σεk +µk, s

−k
[k] (σ+ δ)

}
. Recall that µ1 ≥ µ2 ≥ · · · ≥ µk. For any i∈ {1,2, . . . , k− 1}, if σεi +µi ≤ s−k

[k] (σ),

then σεi <σεk +µk −µi ≤ σεk. Because δ≥ 0, δεk ≥ δεi. Now, define set

A=
{
δεi ≥ 0, i= 1,2, . . . , k− 1 : σεi +µi ≤ s−k

[k] (σ)
}
.

We consider the following two cases.

(a) If A= ∅, then s−k
i (σ+ δ)≤ s−k

[k] (σ) for all i∈ {1,2, . . . ,2k− 1} with s−k
i (σ)≤ s−k

[k] (σ). Because the total

number of these i’s is more than k, one of the s−k
i (σ + δ)’s must be a candidate to be s−k

[k] (σ + δ). Thus,

s−k
[k] (σ+ δ)≤ s−k

[k] (σ) (See the left arrow in Figure A1).

(b) If A ̸= ∅, then s−k
[k] (σ+δ)−s−k

[k] (σ)≤maxA≤ δεk, where the first inequality follows from a contradiction

argument: if s−k
[k] (σ + δ) − s−k

[k] (σ) > maxA, then s−k
[k] (σ + δ) > s−k

i (σ + δ) for all i ∈ {1,2, . . . ,2k− 1} with

s−k
i (σ) ≤ s−k

[k] (σ). Because the total number of these i’s is more than k, no more than (k − 1) elements in

(s−k
1 (σ+ δ), s−k

2 (σ+ δ), . . . , s−k
2k−1(σ+ δ)) are candidates to be s−k

[k] (σ+ δ), which is impossible (See the right

arrow in Figure A1).

By cases (a) and (b), we have s−k
[k] (σ+ δ)− s−k

[k] (σ)≤ δεk. Therefore,

((σ+ δ)εk +µk − s−k
[k] (σ+ δ))+ − (σεk +µk − s−k

[k] (σ))
+

= ((σ+ δ)εk +µk − s−k
[k] (σ+ δ))+ − (σεk +µk − s−k

[k] (σ))

≥ ((σ+ δ)εk +µk − s−k
[k] (σ+ δ))+ − (σεk +µk − s−k

[k] (σ+ δ)+ δεk)

≥ 0.

Next, we verify (A13). If s−k
[k] (σ)≥−σεk+µk, then the right-hand side of (A13) is always negative. Because

the left-hand side is positive (by (A14)), (A13) holds. Thus, in the sequel, we focus on the case where

s−k
[k] (σ)<−σεk + µk. In this case, we claim that s−k

[k] (σ+ δ)≤ s−k
[k] (σ). Indeed, because s

−k
[k] (σ)<−σεk + µk,
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Figure A1 Graphical Illustrations for Cases (a) and (b) in Step (ii)-3

s−k
[k] (σ)

σ ↑ σ + δ

(b)

σ ↑ σ + δ

(a)

s−k
[k] (σ + δ)

s−k
[k] (σ + δ)

Note. The circles denote ∆G(i−d)’s and the triangles represent si’s in the vector ŝ(0, k, k). The elements are arranged

in descending order from top to bottom. The middle vector corresponds to the original vector ŝ(0, k, k) when the

standard deviation of Si is σ. The left arrow illustrates case (a) and the right arrow depicts case (b). In case (a), all

si’s that are less than the median s−k
[k] (σ) in the original vector decrease as σ increases to σ+ δ. In case (b), all si’s

that are less than s−k
[k] (σ) in the original vector cannot increase by more than δεk.

for any i∈ {1,2, . . . , k− 1} with σεi +µi ≤ s−k
[k] (σ), we have σεi <−σεk +µk −µi ≤−σεk, which implies that

δεi <−δεk ≤ 0. Therefore, s−k
[k] (σ)≥ s−k

i (σ+δ) for all i∈ {1,2, . . . ,2k− 1} with s−k
i (σ)≤ s−k

[k] (σ). Because the

total number of these i’s is more than k, one of the s−k
i (σ + δ)’s must be the candidate to be s−k

[k] (σ + δ).

Thus, s−k
[k] (σ+ δ)≤ s−k

[k] (σ)<−σεk +µk ≤ σεk +µk. It follows that

((σ+ δ)εk +µk − s−k
[k] (σ+ δ))+ − (σεk +µk − s−k

[k] (σ))
+

= ((σ+ δ)εk +µk − s−k
[k] (σ+ δ))− (σεk +µk − s−k

[k] (σ))

= δεk + s−k
[k] (σ)− s−k

[k] (σ+ δ)

≥ δεk − s−k
[k] (σ)+ s−k

[k] (σ+ δ)

= (−σεk +µk − s−k
[k] (σ))− (−(σ+ δ)εk +µk − s−k

[k] (σ+ δ))

≥ (−σεk +µk − s−k
[k] (σ))

+ − (−(σ+ δ)εk +µk − s−k
[k] (σ+ δ))+,

which completes the verification.

(iii) Supermodularity in (σ,−u). We shall show that ν(σ,−u,k)− ν(σ,−u− 1, k) is increasing in σ. When

k≤ u, the result trivially holds, so we assume that k≥ u+1. Without loss of generality, let u= 0. This part

also proceeds in three steps.

Step (iii)-1 (Decomposition). Using (A9) derived in the proof of Lemma 3, we obtain

ν(σ,0, k)− ν(σ,−1, k) =E [Fk(0,S(0, k))−Fk−1(1,S(1, k− 1))]

=E
[
max

{
S1, Ŝ[k](0, k,1)

}]
, (A15)
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where Ŝ[k](0, k,1) is the kth order statistic of the random vector Ŝ(0, k,1) = (Ŝ1, Ŝ2, . . . , Ŝ2k−1) =

(S2, S3, . . . , Sk,∆G(1− d),∆G(2− d), . . . ,∆G(k− d)).

Applying the same arguments as in Step (ii)-1, we further transform (A15) as follows:

(A15) =E
[
max

{
σε1 +µ1, Ŝ[k](0, k,1)

}]
.

To emphasize the dependence on σ, we denote S−1
i (σ) as the ith element and S−1

[k] (σ) as the kth order statistic

of Ŝ(0, k,1) when the standard deviation of Si is σ. Therefore, the goal is to show that for any δ≥ 0,

E
[
max

{
(σ+ δ)ε1 +µ1, S

−1
[k] (σ+ δ)

}]
≥E

[
max

{
σε1 +µ1, S

−1
[k] (σ)

}]
.

In the sequel, we use s−1
i (·) and s−1

[k] (·) to represent the realizations of S−1
i (·) and S−1

[k] (·), respectively.
Step (iii)-2 (Asymmetric marginal values around zero). Following Step (ii)-2, given any realization

(ε2, ε3, . . . , εk) and a positive realization ε1, if we can show that

max
{
(σ+ δ)ε1 +µ1, s

−1
[k] (σ+ δ)

}
−max

{
σε1 +µ1, s

−1
[k] (σ)

}
≥ max

{
−σε1 +µ1, s

−1
[k] (σ)

}
−max

{
−(σ+ δ)ε1 +µ1, s

−1
[k] (σ+ δ)

}
, (A16)

then, we have

E
[
max

{
(σ+ δ)ε1 +µ1, s

−1
[k] (σ+ δ)

}]
=

∫ ∞

0

max
{
−(σ+ δ)ε1 +µ1, s

−1
[k] (σ+ δ)

}
ϕ1(ε1)dε1 +

∫ ∞

0

max
{
(σ+ δ)ε1 +µ1, s

−1
[k] (σ+ δ)

}
ϕ1(ε1)dε1

≥
∫ ∞

0

max
{
−σε1 +µ1, s

−1
[k] (σ)

}
ϕ1(ε1)dε1 +

∫ ∞

0

max
{
σε1 +µ1, s

−1
[k] (σ)

}
ϕ1(ε1)dε1

= E
[
max

{
σε1 +µ1, s

−1
[k] (σ)

}]
,

where the first equality follows from the symmetry of εi, and the inequality follows from (A16). Because this

holds for any realization (ε2, ε3, . . . , εk), we complete the proof for part (iii).

Step (iii)-3 (Verification of (A16)). We first show that the left-hand side of (A16) is positive:

max
{
(σ+ δ)ε1 +µ1, s

−1
[k] (σ+ δ)

}
−max

{
σε1 +µ1, s

−1
[k] (σ)

}
≥ 0. (A17)

If s−1
[k] (σ)≤max

{
σε1 +µ1, s

−1
[k] (σ+ δ)

}
, then

max
{
(σ+ δ)ε1 +µ1, s

−1
[k] (σ+ δ)

}
−max

{
σε1 +µ1, s

−1
[k] (σ)

}
≥ max

{
(σ+ δ)ε1 +µ1, s

−1
[k] (σ+ δ)

}
−max

{
σε1 +µ1, s

−1
[k] (σ+ δ)

}
≥ 0,

which implies that (A17) holds. We next show by contradiction that s−1
[k] (σ) >max

{
σε1 +µ1, s

−1
[k] (σ+ δ)

}
cannot hold. Suppose that it holds. For any i∈ {2,3, . . . , k}, if σεi +µi ≥ s−1

[k] (σ), then σεi >σε1 +µ1 −µi ≥
σε1. Because δ≥ 0 and ε1 ≥ 0, we have δεi ≥ δε1 ≥ 0. Now, define set

B=
{
δεi, i= 2,3, . . . , k : σεi +µi ≥ s−1

[k] (σ)
}
.

We consider the following two cases.
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(a) If B= ∅, then s−1
i (σ+ δ)≥ s−1

[k] (σ) for all i∈ {1,2, . . . ,2k− 1} with s−1
i (σ)≥ s−1

[k] (σ). Because the total

number of these i’s is more than k, one of the s−1
i (σ + δ)’s must be a candidate to be s−1

[k] (σ + δ). Thus,

s−1
[k] (σ+ δ)≥ s−1

[k] (σ), which is a contradiction.

(b) If B ̸= ∅, then s−1
[k] (σ+ δ)− s−1

[k] (σ)≥minB ≥ 0, which contradicts s−1
[k] (σ)> s−1

[k] (σ+ δ). Here, the first

inequality follows from a contradiction argument: if s−1
[k] (σ+δ)−s−1

[k] (σ)<minB, then s−1
[k] (σ+δ)< s

−1
i (σ+δ)

for all i∈ {1,2, . . . ,2k− 1} with s−1
i (σ)≥ s−1

[k] (σ). Because the total number of these i’s is more than k, and

s−1
[k] (σ+ δ) is strictly less than these s−1

i (σ+ δ)’s, s−1
[k] (σ+ δ) is impossible to take.

By cases (a) and (b), we conclude that s−1
[k] (σ)>max

{
σε1 +µ1, s

−1
[k] (σ+ δ)

}
cannot hold.

Next, we verify (A16). If s−1
[k] (σ)≤−σε1 +µ1, then

max
{
(σ+ δ)ε1 +µ1, s

−1
[k] (σ+ δ)

}
−max

{
σε1 +µ1, s

−1
[k] (σ)

}
≥ (σ+ δ)ε1 +µ1 − (σε1 +µ1)

≥ −σε1 +µ1 −max
{
−(σ+ δ)ε1 +µ1, s

−1
[k] (σ+ δ)

}
= max

{
−σε1 +µ1, s

−1
[k] (σ)

}
−max

{
−(σ+ δ)ε1 +µ1, s

−1
[k] (σ+ δ)

}
,

which implies that (A16) holds.

If s−1
[k] (σ)>−σε1 +µ1, because s

−1
[k] (σ)≤max

{
σε1 +µ1, s

−1
[k] (σ+ δ)

}
, we only need to consider two cases.

(1) If s−1
[k] (σ)≤ s−1

[k] (σ+ δ), then the right-hand side of (A16) is always negative. Because the left-hand side is

positive (by (A17)), (A16) holds. (2) If s−1
[k] (σ+ δ)< s−1

[k] (σ)≤ σε1 +µ1, we claim that s−1
[k] (σ)− s−1

[k] (σ+ δ)≤
δε1. Indeed, because s

−1
[k] (σ) > −σε1 + µ1, for any i ∈ {2,3, . . . , k} with σεi + µi ≥ s−1

[k] (σ), we have σεi >

−σε1 + µ1 − µi ≥−σε1, which implies that δεi ≥−δε1. Therefore, s−1
i (σ+ δ)≥ s−1

i (σ)− δε1 ≥ s−1
[k] (σ)− δε1

for all i ∈ {1,2, . . . ,2k− 1} with s−1
i (σ)≥ s−1

[k] (σ). Because the total number of these i’s is more than k, one

of the s−1
i (σ+ δ)’s must be a candidate to be s−1

[k] (σ+ δ). Thus, s−1
[k] (σ+ δ)≥ s−1

[k] (σ)− δε1. It follows that

max
{
(σ+ δ)ε1 +µ1, s

−1
[k] (σ+ δ)

}
−max

{
σε1 +µ1, s

−1
[k] (σ)

}
= δε1

≥ s−1
[k] (σ)− s−1

[k] (σ+ δ)

= max
{
−σε1 +µ1, s

−1
[k] (σ)

}
− s−1

[k] (σ+ δ)

≥ max
{
−σε1 +µ1, s

−1
[k] (σ)

}
−max

{
−(σ+ δ)ε1 +µ1, s

−1
[k] (σ+ δ)

}
,

which completes the verification.

(iv) Because v(σ,−u,k) is supermodular in (σ,k), (σ,−u), and (−u,k) (by Lemma 3), we conclude that

v(σ,−u,k) is supermodular in (σ,−u,k). Therefore, the optimal policy (u∗, z∗, k∗) has the desired mono-

tonicity properties with respect to σ2 (Topkis 1998). □

Proof of Proposition 1. The result for Problem (Pu
0 ) is straightforward. The result for Problem (Pz

0)

can be shown by using the argument for the second part of the proof of Theorem 1. Therefore, we omit the

proof for brevity. □
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Proof of Lemma 4. We first show the concavity. Without loss of generality, let u= 0. By Lemma 2,

for any z ∈ {1,2, . . . , n},

E [Fz(0,S(0, z))]−E [Fz−1(0,S(0, z− 1))] =E
[
(Sz − Ŝ[z](0, z, z))

+
]
, (A18)

where Ŝ[z](0, z, z) is the zth order statistic in the random vector Ŝ(0, z, z) = (Ŝ1, Ŝ2, . . . , Ŝ2z−1) =

(S1, S2, . . . , Sz−1,∆G(1− d),∆G(2− d), . . . ,∆G(z− d)). It suffices to show that (A18) is decreasing in z.

Because Sz+1 ≤st Sz, and the three random variables Ŝ[z](0, z, z), Sz, and Sz+1 are mutually independent,

we have (Sz+1 − Ŝ[z](0, z, z))
+ ≤st (Sz − Ŝ[z](0, z, z))

+ (Shaked and Shanthikumar 2007, Theorem 1.A.3 (a)

and (b), p. 6). In addition, by the second inequality in Lemma A1, Ŝ[z](0, z, z)≤ Ŝ[z+1](0, z+1, z+1), almost

surely. Thus, (Sz+1 − Ŝ[z+1](0, z+1, z+1))+ ≤ (Sz+1 − Ŝ[z](0, z, z))
+, almost surely. It follows that

E
[
(Sz+1 − Ŝ[z+1](0, z+1, z+1))+

]
≤E

[
(Sz+1 − Ŝ[z](0, z, z))

+
]
≤E

[
(Sz − Ŝ[z](0, z, z))

+
]
.

Next, we show the decreasing differences; that is,

E [Fz+1(u+1,S(u+1, z+1))]−E [Fz(u+1,S(u+1, z))]≤E [Fz+1(u,S(u, z+1))]−E [Fz(u,S(u, z))] .

Letting z = k−u, we have

E [Fz+1(u+1,S(u+1, z+1))]−E [Fz(u+1,S(u+1, z))]

= E [Fk+1−u(u+1,S(u+1, k+1−u))]−E [Fk−u(u+1,S(u+1, k−u))]

≤ E [Fk+2−u(u,S(u,k+2−u))]−E [Fk+1−u(u,S(u,k+1−u))]

= E [Fz+2(u,S(u, z+2))]−E [Fz+1(u,S(u, z+1))]

≤ E [Fz+1(u,S(u, z+1))]−E [Fz(u,S(u, z))] ,

where the first inequality follows because E [Fk−u(u,S(u,k−u))] is submodular in (u,k) by Lemma 3, and

the second inequality follows because E [Fz(u,S(u, z))] is discrete concave in z. □

Proof of Theorem 3. The proof is established via two steps. In the first step, we show that u∗ ≤ u′ ≤
u∗ + z∗, and in the second step, we show that u∗ + z∗ ≤ z′ if z∗ > 0.

Step 1 (u∗ ≤ u′ ≤ u∗ + z∗). We first prove the first inequality, and then the second.

(i) The proof for u∗ ≤ u′ is by contradiction. Suppose that u∗ >u′. The idea of the proof is to construct a

feasible solution (ũ, z̃) for Problem (P1) that achieves a higher reward than that under (u∗, z∗). Let (ũ, z̃) =

(u′, z∗). Because z̃ = z∗ ≤ n− u∗ ≤ n− u′, policy (ũ, z̃) is feasible. Computing the difference of the rewards

for the two policies, we obtain

ũ∑
i=1

µi − cz̃+E [Fz̃(ũ,S(ũ, z̃))]−
u∗∑
i=1

µi + cz∗ −E [Fz∗(u
∗,S(u∗, z∗))]

= E [Fz∗(u
′,S(u′, z∗))]−E [Fz∗(u

∗,S(u∗, z∗))] +

u′∑
i=1

µi −
u∗∑
i=1

µi

= E

[
max

0≤h≤z∗

{
h∑

i=1

S[i](u
′, z∗)−G(u∗ +h− d)−G(u′ +h− d)+G(u∗ +h− d)

}]
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−E [Fz∗(u
∗,S(u∗, z∗))] +

u′∑
i=1

µi −
u∗∑
i=1

µi

≥ E [Fz∗(u
∗,S(u′, z∗))]−E [Fz∗(u

∗,S(u∗, z∗))] +

u′∑
i=1

µi −G(u′ − d)−
u∗∑
i=1

µi +G(u∗ − d)

> 0,

which contradicts the optimality of (u∗, z∗) for Problem (P1). Here, the first inequality follows from the

convexity ofG(·) and u∗ >u′. For the second inequality, because u∗ >u′, µu′+i ≥ µu∗+i for all i∈ {1,2, . . . , z∗}.
Then, by Lemma 1,

E [Fz∗(u
∗,S(u′, z∗))]−E [Fz∗(u

∗,S(u∗, z∗))]≥ 0.

In addition, by the optimality of u′ for Problem (Pu
1 ),

u′∑
i=1

µi −G(u′ − d)−
(

u∗∑
i=1

µi −G(u∗ − d)

)
> 0.

Therefore, u∗ ≤ u′.

(ii) The proof for u′ ≤ u∗ + z∗ is by contradiction. Suppose that u′ > u∗ + z∗. Similarly, the idea of the

proof is to construct a feasible solution (ũ, z̃) for Problem (P1) that achieves a higher reward than that under

(u∗, z∗). Let (ũ, z̃) = (u′ − z∗, z∗). Because ũ= u′ − z∗ > u∗ ≥ 0 and ũ+ z̃ = u′ ≤ n, policy (ũ, z̃) is feasible.

Computing the difference of the rewards for the two policies, we obtain

ũ∑
i=1

µi − cz̃+E [Fz̃(ũ,S(ũ, z̃))]−
u∗∑
i=1

µi + cz∗ −E [Fz∗(u
∗,S(u∗, z∗))]

=

u′−z∗∑
i=1

µi +E [Fz∗(u
′ − z∗,S(u′ − z∗, z∗))]−

u∗∑
i=1

µi −E [Fz∗(u
∗,S(u∗, z∗))]

= E

[
max

0≤h≤z∗

{
h∑

i=1

S[i](u
′ − z∗, z∗)−G(u∗ +h− d)−G(u′ − z∗ +h− d)+G(u∗ +h− d)

}]

−E [Fz∗(u
∗,S(u∗, z∗))] +

u′−z∗∑
i=1

µi −
u∗∑
i=1

µi

≥ E [Fz∗(u
∗,S(u′ − z∗, z∗))]−E [Fz∗(u

∗,S(u∗, z∗))]−G(u′ − d)+G(u∗ + z∗ − d)+

u′−z∗∑
i=1

µi −
u∗∑
i=1

µi

≥ 0,

which contradicts the optimality of (u∗, z∗) for Problem (P1). Here, the first inequality follows from the

convexity of G(·) and u′ − z∗ > u∗. For the second inequality, because u′ − z∗ > u∗, µu∗+i ≥ µu′−z∗+i for all

i∈ {1,2, . . . , z∗}. Then, by Lemma 1,

E [Fz∗(u
∗,S(u′ − z∗, z∗))]−E [Fz∗(u

∗,S(u∗, z∗))]≥
u′∑

i=u′−z∗+1

µi −
u∗+z∗∑
i=u∗+1

µi,

and by the optimality of u′ for Problem (Pu
1 ),

u′−z∗∑
i=1

µi −
u∗∑
i=1

µi +

u′∑
i=u′−z∗+1

µi −
u∗+z∗∑
i=u∗+1

µi −G(u′ − d)+G(u∗ + z∗ − d)
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=

u′∑
i=1

µi −G(u′ − d)−
(

u∗+z∗∑
i=1

µi −G(u∗ + z∗ − d)

)
≥ 0.

Therefore, u′ ≤ u∗ + z∗.

Step 2 (u∗ + z∗ ≤ z′ if z∗ > 0). The proof is by contradiction. Suppose that z′ < u∗ + z∗. The idea of

the proof is to construct a feasible solution (ũ, z̃) for Problem (P1) that achieves a higher reward than that

under (u∗, z∗). We consider the following two cases.

Case 1. z′ ≥ u∗. Let (ũ, z̃) = (u∗, z′−u∗). Because 0≤ z̃ = z′−u∗ < z∗, policy (ũ, z̃) is feasible. Computing

the difference of the rewards for the two policies, we obtain

− cz̃+E [Fz̃(ũ,S(ũ, z̃))] + cz∗ −E [Fz∗(u
∗,S(u∗, z∗))]

= − c(z′ −u∗)+E [Fz′−u∗(u∗,S(u∗, z′ −u∗))] + cz∗ −E [Fz∗(u
∗,S(u∗, z∗))]

≥ − cz′ +E [Fz′(0,S(0, z
′))] + c(u∗ + z∗)−E [Fu∗+z∗(0,S(0, u

∗ + z∗))]

> 0,

where the first inequality follows by Lemma 3 (submodularity), and the second inequality follows by the

optimality of z′ for Problem (Pz
1).

Case 2. z′ < u∗. Let (ũ, z̃) = (u∗,0). Clearly, policy (ũ, z̃) is feasible. In addition, because z∗ > 0, policy

(ũ, z̃) is not identical to (u∗, z∗). Computing the difference of the rewards for the two policies, we obtain

E [Fz̃(ũ,S(ũ, z̃))] + cz∗ −E [Fz∗(u
∗,S(u∗, z∗))]

= E [F0(u
∗,S(u∗,0))]+ cz∗ −E [Fz∗(u

∗,S(u∗, z∗))]

≥ E [Fu∗(0,S(0, u∗))] + cz∗ −E [Fu∗+z∗(0,S(0, u
∗ + z∗))]

≥ − cz′ +E [Fz′(0,S(0, z
′))] + c(z′ + z∗)−E [Fz′+z∗(0,S(0, z

′ + z∗))]

> 0,

where the first inequality follows by Lemma 3 (submodularity), the second inequality follows by Lemma 4

(concavity), and the third inequality follows by the optimality of z′ for Problem (Pz
1) and z

∗ > 0. □

Proof of Theorem 4. The proof consists of two steps. In the first step, we show an unconditional

version of (17) that

P

∣∣∣∣∣ Gz(u, S̃(u, z))

E
[
Gz(u, S̃(u, z))

] − 1

∣∣∣∣∣≥ log(z)√
z

≤ C2

log(z)
, (A19)

where C2 is a positive constant that does not depend on z, n, and d. In the second step, we derive a similar

bound for E[Gz(u, S̃(u, z)) |X1]/E[Gz(u, S̃(u, z))]. By the law of total variance, Var(E[Gz(u, S̃(u, z)) |X1)])≤
Var(Gz(u, S̃(u, z))). Thus, the second step is a direct consequence of the first step.

To verify (A19), we first show that Var(Gz(u, S̃(u, z))) =O(z log(z)). By (16), we have

Gz(u, S̃(u, z))−E
[
Gz(u, S̃(u, z))

]
=

z∑
i=1

Ai +

z∑
i=1

Bi,
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where for i= 1,2, . . . , z,Ai = (S̃u+i − Ŝ[i](u, i, i))
+ −E

[
(S̃u+i − Ŝ[i](u, i, i))

+
∣∣Fi−1

]
,

Bi =E
[
(S̃u+i − Ŝ[i](u, i, i))

+
∣∣Fi−1

]
−E

[
(S̃u+i − Ŝ[i](u, i, i))

+
]
.

Here, Fi, i= 1,2, . . ., is the σ-field generated by the data (S̃u+1, S̃u+2, . . . , S̃u+i), and F0 is the trivial σ-field.

Clearly, (Fi)i≥0 is a filtration. Note that
∑i

l=1Al is a martingale with respect to Fi. Then, the martingale

differences Ai and Aj for any i ̸= j are uncorrelated (Durrett 2019). It follows that

Var(Gz(u, S̃(u, z)))

= Var

(
z∑

i=1

Ai +

z∑
i=1

Bi

)

≤ 2Var

(
z∑

i=1

Ai

)
+2Var

(
z∑

i=1

Bi

)

= 2

z∑
i=1

Var(Ai)+ 2E

( z∑
i=1

Bi

)2


≤ 2

z∑
i=1

Var(Ai)+ 2z

z∑
i=1

Var (Bi) , (A20)

where the two inequalities follow from Cauchy–Schwarz inequality, and the second equality follows from the

uncorrelation among Ai’s.

We now show that supiVar(Ai)<∞. We have

Var(Ai) =E
[(

(S̃u+i − Ŝ[i](u, i, i))
+
)2]

− 2E
[
E
[
(S̃u+i − Ŝ[i](u, i, i))

+E
[
(S̃u+i − Ŝ[i](u, i, i))

+
∣∣Fi−1

] ∣∣∣∣Fi−1

]]
+E

[(
E
[
(S̃u+i − Ŝ[i](u, i, i))

+
∣∣Fi−1

])2]
=E

[(
(S̃u+i − Ŝ[i](u, i, i))

+
)2]

−E
[(

E
[
(S̃u+i − Ŝ[i](u, i, i))

+
∣∣Fi−1

])2]
≤E

[
(S̃u+i − Ŝ[i](u, i, i))

21
(
S̃u+i ≥ Ŝ[i](u, i, i)

)]
,

where the first equality follows from the law of total expectation, and 1(·) is an indicator function. In addition,

by definition, it is easy to see that the median Ŝ[i](u, i, i) satisfies

∆G(u+1− d)≤ Ŝ[i](u, i, i)≤∆G(u+ i− d), almost surely. (A21)

Then, it suffices to show that supξ∈[∆G(u+1−d),∆G(u+i−d)]E[(S̃u+i−ξ)21(S̃u+1 ≥ ξ)]<∞. By taking derivative

with respect to ξ, it can be shown that the expectation is decreasing in ξ. Therefore, the supremum is

achieved at ξ =∆G(u+1− d); that is,

Var(Ai)≤E
[
(S̃u+i −∆G(u+1− d))21

(
S̃u+i ≥∆G(u+1− d)

)]
,

which is uniformly bounded because S̃u+i’s are i.i.d. with a finite variance and ∆G(u+1− d) is bounded.

To analyze the second term in (A20), we denote the expression form of the conditional expectation term

in Bi as

ψ(Ŝ[i](u, i, i)) :=

∫ ∞

Ŝ[i](u,i,i)

(
s̃u+i − Ŝ[i](u, i, i)

)
fS(s̃u+i)ds̃u+i,
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where fS(·) is the conditional density of S̃u+i, given that its corresponding initial score, Xj1 for some j,

satisfies the condition X[u]1 ≥Xj1 ≥X[u+z]1. Then, we have

ψ′(Ŝ[i](u, i, i)) =−
∫ ∞

Ŝ[i](u,i,i)

fS(s̃u+i)ds̃u+i,

which is bounded by 1 in absolute value. By the mean value theorem,

ψ(Ŝ[i](u, i, i)) =ψ(0)+ Ŝ[i](u, i, i)

∫ 1

0

ψ′(rŜ[i](u, i, i))dr,

which implies that Var(Bi) ≤ Var(Ŝ[i](u, i, i)). Because d ≍ n and Ŝ[i](u, i, i) is the median of a (2i − 1)-

dimensional random vector composed of (i−1) i.i.d. random variables alongside i constants, Var(Ŝ[i](u, i, i))

scales as O(1/i) (Shao 2003, Theorem 5.10, p. 353). Wrapping up, we have
∑z

i=1Var(Bi) =O(log(z)). Thus,

Var(Gz(u, S̃(u, z))) =O(z log(z)).

Next, we show that |E[Gz(u, S̃(u, z))]|=Ω(z). Because E[Gz(u, S̃(u, z))] is discrete concave and increasing

in z, we have∣∣∣E[Gz(u, S̃(u, z))
] ∣∣∣≥ z

n−u
E
[
Gn−u(u, S̃(u,n−u))

]
=

z

n−u

n−u∑
i=1

E
[
(S̃u+i − Ŝ[i](u, i, i))

+
]
.

By the second inequality in (A21), E[(S̃u+i − Ŝ[i](u, i, i))
+]≥E[(S̃u+i −∆G(u+ i− d))+], which is uniformly

bounded. This implies that |E[Gz(u, S̃(u, z))]|=Ω(z).

Finally, the concentration bound (A19) follows from Chebyshev’s inequality. □

Appendix C: Proofs for the Auxiliary Results

Proof of (9) in Section 5. By the conditional variance formula,

Var(g(Xi1,Xi2) |Xi1)

= E
[
g2(Xi1,Xi2) |Xi1

]
− f2(Xi1)

= E
[
Y 2
i − 2Yiϵ

′
i + ϵ′2i |Xi1

]
− f2(Xi1)

= E
[
2Yi(ϵi − ϵ′i)− ϵ2i + ϵ′2i |Xi1

]
= E

[
2(f(Xi1)+ ϵi)ϵi − 2(g(Xi1,Xi2)+ ϵ′i)ϵ

′
i − ϵ2i + ϵ′2i |Xi1

]
= − 2E [g(Xi1,Xi2)ϵ

′
i |Xi1] +E

[
ϵ2i |Xi1

]
−E

[
ϵ′2i |Xi1

]
= − 2E [E [g(Xi1,Xi2)ϵ

′
i |Xi1,Xi2] |Xi1] +E

[
ϵ2i |Xi1

]
−E

[
ϵ′2i |Xi1

]
= − 2E [g(Xi1,Xi2)E [ϵ′i |Xi1,Xi2] |Xi1] +E

[
ϵ2i |Xi1

]
−E

[
ϵ′2i |Xi1

]
= E

[
ϵ2i |Xi1

]
−E

[
ϵ′2i |Xi1

]
,

where the fifth equality follows from E [f(Xi1)ϵi |Xi1] = f(Xi1)E [ϵi |Xi1] = 0, the sixth follows from the law

of iterated expectations, and the last follows from E [ϵ′i |Xi1,Xi2] = 0. □

Proof of Proposition A1. For Theorem 1 to hold, it suffices to examine whether the second-stage

problem (6) still satisfies the marginal properties presented in Lemma 1. By Lemma 2, the second-stage

problem becomes

E

[
max

0≤h≤|Z|

{
h∑

j=1

S′
[j](x1,Z)−G(|U|+h− d)

}]

= E
[
(S′

i(xi1)− Ŝ′
[|Z|])

+
]
+E

[
max

0≤h≤|Z|−1

{
h∑

j=1

S′
[j](x1,Z \ {i})−G(|U|+h− d)

}]
, (A22)
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where Ŝ′
[|Z|] is the |Z|th order statistic of the random vector ((S′

j(xj1))j∈Z\{i},∆G(|U|+1−d),∆G(|U|+2−
d), . . . ,∆G(|U|+ |Z|− d)), which is independent of S′

i(xi1).

Take any realization ŝ′[|Z|] of Ŝ
′
[|Z|]. Letting S

′
i(xi1) = f(xi1) + σ(xi1)ϵ

′′
i , we take the first-order derivative

of (A22) with respect to xi1 as follows:

∂

∂xi1

E
[
(S′

i(xi1)− ŝ′[|Z|])
+
]
= f ′(xi1)P

(
S′

i(xi1)≥ ŝ′[|Z|]

)
+σ′(xi1)E

[
ϵ′′i 1

(
S′

i(xi1)≥ ŝ′[|Z|]

)]
.

Then, the marginal properties in Lemma 1 are equivalent to

0≤ f ′(xi1)P
(
S′

i(xi1)≥ ŝ′[|Z|]

)
+σ′(xi1)E

[
ϵ′′i 1

(
S′

i(xi1)≥ ŝ′[|Z|]

)]
≤ f ′(xi1).

Rearranging it yields

−f ′(xi1)P
(
S′

i(xi1)≥ ŝ′[|Z|]

)
E
[
ϵ′′i 1

(
S′

i(xi1)≥ ŝ′[|Z|]

)] ≤ σ′(xi1)≤
f ′(xi1)P

(
S′

i(xi1)< ŝ
′
[|Z|]

)
E
[
ϵ′′i 1

(
S′

i(xi1)≥ ŝ′[|Z|]

)]
⇐⇒ −f ′(xi1)

E
[
ϵ′′i | S′

i(xi1)≥ ŝ′[|Z|]

] ≤ σ′(xi1)≤
f ′(xi1)P

(
S′

i(xi1)< ŝ
′
[|Z|]

)
E [ϵ′′i ]−E

[
ϵ′′i 1

(
S′

i(xi1)< ŝ′[|Z|]

)]
⇐⇒ −f ′(xi1)

E
[
ϵ′′i | S′

i(xi1)≥ ŝ′[|Z|]

] ≤ σ′(xi1)≤
−f ′(xi1)

E
[
ϵ′′i | S′

i(xi1)< ŝ′[|Z|]

]
⇐⇒ 1

E
[
ϵ′′i | f(xi1)+σ(xi1)ϵ′′i < ŝ

′
[|Z|]

] ≤− σ′(xi1)

f ′(xi1)
≤ 1

E
[
ϵ′′i | f(xi1)+σ(xi1)ϵ′′i ≥ ŝ′[|Z|]

] .
Because it suffices to require the above inequalities to hold for any realization ŝ′[|Z|] of Ŝ

′
[|Z|], we finalize the

proof by taking the supremum for the lower bound and the infimum for the upper bound. □
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