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Abstract

We study a rolling recruitment process in which applicants leave the system stochastically.

Applicants arrive randomly over time, and each applicant is available for a random amount of

time after they arrive. In each period, the recruiter must decide whether to stop or to wait.

If they stop, they need to determine how many offers to make and whom to make offers to,

and the applicants who do not receive an offer will leave the system. If the recruiter waits,

more applicants will be available in the next period, while some who arrived earlier will leave.

We model the process as a large-scale optimal stopping problem and show how the applicant

qualifications, measured by scores, affect the recruiter’s optimal policy. We find that the optimal

stopping rule for each applicant’s score is a two-threshold policy. If the score exceeds the higher

threshold, the recruiter stops and makes an offer to the applicant and possibly to others. If the

score falls below the lower threshold, the recruiter also stops but makes no offer to the applicant.

If the score is in between the two thresholds, the recruiter waits. We further explore the impact

on an applicant’s likelihood of receiving an offer if their competitors become more qualified.

When the score of another applicant increases, the recruiter may change from making an offer

to an applicant to waiting or to instead making an offer to the other applicant whose score has

increased. In other words, an applicant may be disadvantaged if they face stronger competitors,

which is expected. However, an applicant may also benefit from having stronger competitors.

When the score of another applicant increases, the recruiter may change from not making an

offer to an applicant to making an offer to both applicants. Overall, we provide valuable insights

into the role of applicant qualifications in stopping decisions, propose methods for computing

the optimal policy, and quantify the benefits of endogenously determining the stopping rule.
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1 Introduction

A sequential or rolling recruitment process is one in which a recruiter needs to fill a number of job

vacancies over a recruitment season and applicants can submit their applications at any time before

the end of the season. The recruiter assesses the qualifications of the applicants as they arrive and

may extend offers at any period during the season. The rolling process can spread out the workload

for the recruiter, provide time flexibility to applicants, and enhance the applicants’ experiences (Du

et al. 2024). In managing a rolling process, one practical and challenging question that the recruiter

must answer is when to make offers to applicants and how many offers to make. To see the trade-off

facing the recruiter, let us consider two extreme policies regarding the timing of making offers. At

one extreme, the recruiter can make offers to applicants as soon as they arrive in a period. Under

this policy, the recruiter may risk making offers to applicants who arrive earlier but who are less

qualified than those who arrive later. At the other extreme, the recruiter can wait until the end of

the season, at which point they can rank all of the applicants and determine whom to make offers

to. However, some of the applicants who arrived earlier may have already accepted offers elsewhere

and will thus no longer be available. In determining when to make offers and how many offers to

make, the recruiter is confronted with three types of uncertainty at any given point: how many

applicants will arrive in the future, how qualified they are, and how long those who have submitted

applications will remain available.

The question above is at the very heart of managing a rolling recruitment process. Without a

good answer, the full potential of a rolling process cannot be realized. Because of the uncertainty

involved, this question is complex, and without an analytical tool, it is impossible to understand

the trade-off, let alone provide a good answer. In this paper, we model the process as a large-scale,

discrete-time optimal stopping problem. A random number of applicants arrive in each period, and

the recruiter assesses their qualifications, which are measured by scores, as soon as they arrive.

The recruiter makes two decisions in each period. First, they must decide whether to stop or to

wait. If they stop, they need to determine how many offers to make and to whom. The applicants

who do not receive an offer will leave the system and cannot be recalled. If the recruiter waits,

more applicants will be available in the next period, while some who arrived earlier will leave. The

recruiter’s objective is to maximize the total reward, which is measured by the total scores of the
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hired applicants minus the penalty cost associated with the potential mismatch between the total

number of vacancies and the number of applicants hired in the end. Intuitively, the recruiter’s

decisions depend on the qualifications of the applicants who have arrived but have not departed.

The focus of our study is on the impact of the applicants’ qualifications on the recruiter’s optimal

policy and total reward.

For each applicant’s score, there are two thresholds. If the score exceeds the higher threshold,

the recruiter stops and makes an offer to the applicant, and possibly to others. If the score falls

below the lower threshold, the recruiter also stops but does not make an offer to the applicant. If

the score is between the two thresholds, the recruiter waits. Somewhat surprisingly, the recruiter

may change from stopping to waiting when an applicant’s score increases. When the recruiter waits,

they risk losing the applicants with high scores and hence being left with those with low scores.

When an applicant’s score increases from very low to intermediate, the recruiter’s risk of being left

with applicants with very low scores decreases, which provides a stronger incentive to wait.

What is the impact on an applicant’s likelihood of receiving an offer if their competitors become

more qualified? When the score of another applicant increases, the recruiter may change from

making an offer to one applicant to making an offer to another applicant whose score has increased.

In other words, an applicant may be disadvantaged if they face stronger competitors, which is

expected. However, when the score of another applicant increases, the recruiter may also change

from waiting to making offers to both applicants, or change from stopping and making offers to

neither applicant to stopping and making offers to both. In this case, an applicant benefits from

having stronger competitors. In the former case, this “free riding” phenomenon occurs because

once the recruiter stops, all applicants leave the system, and it will take time for the applicant pool

to thicken again. The recruiter therefore lowers the cutoff. In the latter case, it occurs because

hiring both, as opposed to hiring only one, moves the total number of hired applicants closer to

the target, and this may allow the recruiter to be more patient in waiting for qualified applicants

in later periods. Finally, we show that the recruiter benefits from having a pool of applicants with

more dispersed scores in the system or applicants with stochastically more variable scores arriving

in the future.

Although our work is motivated by rolling recruitment processes, our model and results are

applicable to practices such as dynamic auctions, investment, and selling assets. For example, on

online auction platforms such as eBay, a seller conducts auctions to sell a product with multiple

units, and buyers with different reservation values bid on the product during each bid episode

(Vulcano et al. 2002). In sequential investment, an investor with access to a limited pool of capital
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decides the investment amount for each sequentially revealed opportunity (e.g., advertising), and

the return depends on the investment amount and the quality of the opportunity (Prastacos 1983).

One thing in common among all of these practices is that limited resources must be allocated to

opportunities that arrive randomly over time. The opportunities are available for consideration

only for a limited and random amount of time; this has been called stochastic departures in the

literature (Karni and Schwartz 1977, Kesselheim et al. 2024).

In a rolling recruitment process, the recruiter benefits from exercising the option to waiting;

that is, they determine endogenously whether they should stop or wait in each period depending

on the number and qualifications of the applicants already in the system. The benefits of waiting

in operations are well documented. In online retailing, for example, when retailers such as Amazon

receive an order, there is a time delay for picking and packing the order to smooth the workload of

its warehouses or to prioritize shipping for urgent orders (Xu et al. 2009). In emergency operations,

after treating patients, emergency department physicians determine whether to admit their patients

for inpatient care or discharge them. Physicians may postpone requesting an inpatient bed to batch

more patients, which is a practical way to improve their productivity (Feizi et al. 2023). In all of

these practices, it is important to make waiting decisions judiciously to prevent excessive departures,

which means order cancellations in retailing and patient elopement in health care (i.e., a patient

leaves the hospital against medical advice, which may pose an imminent threat to the patient’s

health or safety). We numerically evaluate the value of waiting. Our numerical studies show that

the value can exceed 10% and that it is high when highly qualified applicants arrive infrequently,

the total number of vacancies is not too high, the arrival rate is low, or the departure probability

is low.

The rest of the paper is organized as follows. In Section 2, we provide a discussion of the related

literature. We formulate the model in Section 3, present the structural properties of the optimal

policy in Section 4, and investigate the impact of score dispersion in Section 5. In Section 6, we

propose a threshold-based heuristic inspired by our theoretical results and use it to numerically

examine the value of endogenously determining the stopping rule. In Section 7, we extend our

analysis to a more general setting that involves waiting lists. We conclude the paper in Section 8.

2 Related Literature

Sequential recruitment has traditionally been studied under the assumption that applicants arrive

one at a time and the recruiter must reject or accept them on the spot (e.g., Arlotto and Gurvich
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2019, Vera and Banerjee 2021, Arnosti and Ma 2023). In Li and Yu (2021), however, applicants are

assessed and offers are made periodically in batches. When applicants are processed in batches, the

recruiter must rank the applicants who arrive in that period, and the reject/accept decision for each

applicant may depend on the qualifications of all of the applicants. Similarly, in Du et al. (2024),

applicants arrive and are assessed in batches, but applicants who receive offers may reject them.

The incorporation of random yields complicates the model. Therefore, instead of finding optimal

policies, they focus on deriving simple and asymptotically optimal heuristics and test them in a

case study. Our study differs from the literature in two significant ways. First, in the literature,

the recruiter must stop to assess applicants and make offers either as soon as applicants arrive or at

a fixed sequence of periods, while our model allows the recruiter to endogenously determine when

to stop, depending on the number and qualifications of the applicants in the system. Second, prior

studies do not consider stochastic departures, which is a major element in our model.

Sequential recruitment is an example of more general sequential assignment problems, where a

fixed amount of a resource is assigned to opportunities that arrive randomly over time to maximize

the total expected reward. Many applications fall under the category of sequential assignment

problems. For example, Prastacos (1983) examines optimal investment strategies for an investor

who faces a sequence of opportunities with random qualities, where the investment return depends

on the amount of capital allocated and the quality of the opportunity. Ahn et al. (2021) formulate

an asset-selling problem involving debt obligations, where the seller decides on the selling portion

in each period after observing the selling price. In Zhang and Swaminathan (2020), a farmer

must allocate seed amount in each period under rainfall uncertainty. In Vulcano et al. (2002), a

seller sells a fixed amount of inventory through dynamic auctions and, as in Li and Yu (2021),

bids are evaluated in a fixed, predetermined sequence of intervals. Xie et al. (2023) focus on the

benefits of waiting in a class of sequential assignment problems. To our best knowledge, none of the

above studies allows the lengths of the intervals to be chosen endogenously or considers stochastic

departures.

Our work is also intimately connected to the extensive literature on the secretary problem.1

In the classic formulation of the secretary problem, n applicants are presented sequentially to a

1Here we define the secretary problem narrowly as the one in which the objective is to maximize the probability

of choosing the best applicants, and the payoff depends on the observations of their relative ranks and not on their

actual values. Similar definitions can be found, for example, in Ferguson (1989). However, some scholars have defined

the secretary problem more broadly (e.g., Arnosti and Ma 2023) and viewed it as an example of sequential assignment

problems.
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recruiter, who accepts or rejects each applicant based on their relative ranks. The recruiter wishes

to maximize the probability of choosing the best applicant. Earliest work on the secretary problem

includes Gardner (1960), Lindley (1961), and Gilbert and Mosteller (1966), to name a few. For

reviews of studies on the secretary problem and its variations, readers can refer to Freeman (1983),

Ferguson (1989), and DeGroot (2004). Some extensions of the classic secretary problem are more

relevant to our work. For example, Goldys (1978) and Ho and Krishnan (2015) address a scenario

in which the decision for each job vacancy can be delayed until after a fixed number of additional

applicants have been seen, which is sometimes called a “sliding window.” Kesselheim et al. (2024)

consider applicant stochastic departures, which seem to be more realistic than a sliding window.

Obviously, because of differing objectives, the tools that we use for analysis and the optimal policy

for our problem are different from those for the secretary problem.

One of the key features in our model is stochastic departures. There is considerable interest in

stochastic departures in other contexts. For example, a large strand of the queuing theory literature

deals with stochastic scheduling in the presence of customer abandonment, where customers in a

service system may become impatient and abandon the system without receiving service. For a

detailed review, refer to Gans et al. (2003). The trade-off between waiting and market thickness in

the presence of stochastic departures is also extensively studied in the matching theory literature.

See Akbarpour et al. (2020) and Ashlagi et al. (2023) for recent reviews.

In summary, although the body of related literature is voluminous, our work is the first to study

a rolling recruitment process in which the recruiter’s objective is to maximize the total reward, the

recruiter can determine the timing of making offers endogenously, and applicants leave the system

stochastically. In addition, our study centers on the structural properties of the recruiter’s optimal

policy and total reward with respect to applicant qualifications.

3 The Model

In the following, we use bold letters to represent vectors and ei to denote the vector with 1 in the

ith coordinate and 0 in all other coordinates. Let s = (s1, s2, . . . , sn). The dimensions of ei and s

should be clear from the context. Let s−j = (s1, . . . , sj−1, sj+1, . . . , sn) and (si)i∈I be defined the

same as s but only keeping the coordinates in I ⊂ {1, 2, . . . , n}, e.g., (si)i∈{1,n} = (s1, sn). Denote

the size of a finite set A by |A| and the power set by 2A. Let x+ = max {0, x} and x− = max {0,−x}.
Let ∇xif(x) represent (f(x+ εei)− f(x))/ε for some small ε > 0.

A recruiter needs to fill d job vacancies in a recruitment season that is T periods long. A random
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number of applicants arrive in each period. Let the random variable Nt represent the number of

applicants who are in the system in period t. Its realization is denoted by nt. The value to the

recruiter of hiring applicant i in period t is represented by an assessment score St
i , which is a positive

and continuous random variable with a distribution function F . Let sti be the realization of St
i . Each

applicant arriving in a period departs the system in the next period with probability p ∈ [0, 1]. The

random variable W t
i represents whether applicant i who is in the system in period t departs in

period t + 1. It is equal to one if he or she departs in the next period and zero otherwise.2 Let

Wt = (W t
1,W

t
2, . . . ,W

t
Nt
), St = (St

1, S
t
2, . . . , S

t
Nt
), and st = (st1, s

t
2, . . . , s

t
nt
). The scores of applicants

arriving across different periods are independent. Our main results continue to hold when the arrival

process, the departure process, and the distribution of scores are nonstationary.

The timing of events in each period t is as follows. First, applicants arrive and the recruiter

observes the total number of applicants hired so far, qt, the number of applicants in the system, nt,

and their scores, st. Second, the recruiter decides whether to stop or to wait. We define at ∈ {0, 1}
as the stopping decision. If the recruiter waits (at = 0), some applicants may depart at the end of

the period; if the recruiter stops (at = 1), they rank the nt applicants according to their scores and

determine the number of offers, mt, to make.3 The applicants who do not receive an offer will leave

the system and cannot be recalled later. At the end of the recruitment season, there is a penalty cost,

measured by a convex function G, if the total number of applicants recruited, qT+1, deviates from

the hiring target d. It can be defined as, for example, G(qT+1 − d) = u(qT+1 − d)− + o(qT+1 − d)+,

for some positive marginal underage and overage costs, u and o, respectively.4

Consistent with the literature on secretary problems, in the basic model, we assume that once

the recruiter stops, the applicants who do not receive an offer will leave the system and there is no

waiting list. In high-volume recruitment processes in which applicants are evaluated and offers are

made batch by batch, if the market is very competitive, every time the recruiter stops to process

a batch of applicants, the applicants whose scores are close but below the cutoff will take offers

elsewhere. The applicants whose scores are far below the cutoff will not be considered even if they

2We model applicants’ stochastic departures differently from Akbarpour et al. (2020), Ashlagi et al. (2023), and

Kesselheim et al. (2024). In these papers, one can identify applicants who are about to depart, whereas in our model,

the recruiter can only predict how likely each applicant is to depart at the end of a period.
3We can also add a fixed cost for each stop, but doing so will not affect our main results.
4In our model, meeting the target is not a hard constraint. In college admission, for example, recruiters often

accept more or less applicants than the target, depending on the qualification of the applicants. If overage is not

allowed, then we can set the overage cost sufficiently high. Underage must be allowed unless the total number of

applicants during the entire season is guaranteed to be sufficiently large.
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were placed on a waiting list (Du et al. 2024). In this environment, our assumption of waiting list

is valid. We will discuss the implications of waiting lists in Section 7.

Let us define St+1
A (st) = (sti)i∈{j∈{1,2,...,nt}:W t

j=0}, which represents the scores of the applicants

who are in the system in period t and are still in the system in period t + 1. Let St+1
B denote the

scores of the applicants who arrive in period t + 1. Clearly, St+1
A (st) and St+1

B are independent.

Given st, the system dynamics with respect to the score information from period t to period t+ 1

are given by

St+1(st, at) =


(St+1

A (st),St+1
B ) if at = 0,

St+1
B if at = 1.

In other words, if the recruiter waits, the score information in the next period consists of the scores

of the applicants who arrived at or before period t and are still in the system in period t+1 and the

scores of the applicants who arrive in period t + 1; if the recruiter stops, the score information in

the next period only includes the scores of the applicants who arrive in period t+ 1. The dynamic

programming formulation is as follows:

Vt(qt, s
t) = max

{
EVt+1(qt,S

t+1(st, 0)), max
1≤mt≤nt

Jt(qt,mt, s
t)

}
, (1)

where

Jt(qt,mt, s
t) =

mt∑
i=1

st[i] + EVt+1(qt +mt,S
t+1(st, 1)),

and the boundary condition is VT+1(qT+1, s
T+1) = −G(qT+1 − d). Here, st[i] denotes the ith largest

element in st, the expectation in Vt is with respect to Wt and St+1
B , and the expectation in Jt is

with respect to St+1
B .

We define the optimal stopping rule as

a∗t (qt, s
t) = 1

(
max

1≤mt≤nt

Jt(qt,mt, s
t) ≥ EVt+1(qt,S

t+1(st, 0))

)
,

where 1(·) is the indicator function, and the optimal number of offers to make as

m∗
t (qt, s

t) = argmax
1≤mt≤nt

Jt(qt,mt, s
t). (2)

When there are multiple maximizers, m∗
t (qt, s

t) is defined as the largest one. One can easily verify

that a cutoff policy is optimal. In other words, in the same period, an applicant is hired only if all

applicants with strictly higher scores are hired. Therefore, st[m∗
t (qt,s

t)] represents the optimal cutoff

score. Let

Mt(qt, s
t) =

{
i ∈ {1, 2, . . . , nt} : sti ≥ st[m∗

t (qt,s
t)]

}
,
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which represents the set of all applicants whose scores are greater than the cutoff score. However,

Mt(qt, s
t) is not necessarily the offer list because when multiple applicants have the same score as

st[m∗
t (qt,s

t)], only some of them are on the offer list.

Before we investigate the optimal policy, we first establish the following properties of the value

function, which are crucial for showing the optimal policy.

Lemma 1.

(i) Vt(qt, s
t) is convex increasing in st.

(ii) ∇stj
Vt(qt, s

t) ≤ 1, j = 1, 2, . . . , nt.

(iii) ∇stj
EVt+1(qt,S

t+1(st, 0)) ≤ 1− p, j = 1, 2, . . . , nt.

Lemma 1(i) provides the monotonicity and convexity of the value function. Lemma 1(ii) means

that the marginal value of each score is always less than one. The interpretation for the third result

is that when the recruiter waits, the marginal value of each score cannot exceed the probability of

the applicant remaining in the system in the next period. As the dynamic program has a multiple-

dimension state space, the optimal policy is complex. We characterize the optimal policy through

answering the following questions. First, how does the optimal policy with respect to applicant j

change if the score of applicant j increases? Second, how does the optimal policy with respect to

applicant j change if the score of applicant i increases? Third, how can we extend the results in

the previous two questions to any number of scores? Finally, what happens to the optimal policy if

scores become more dispersed? We can form an overview of the optimal policy after these questions

are answered.

4 Optimal Policy

We start by analyzing the problem of determining the optimal number of offers when the recruiter

stops. Let s = (s1, s2, . . . , sn) ∈ Rn
+ and s[i] be the ith largest value in s. Consider the following

optimization problem:

f(s) = max
1≤m≤n

{
m∑
i=1

s[i] + g(m)

}
, (3)

where g(m) is any real-valued function of m. Determining the optimal number of offers when the

recruiter stops in (1) is a special case of (3). Denote by m∗(s) the largest maximizer in (3) and let

M(s) =
{
i ∈ {1, 2, . . . , n} : si ≥ s[m∗(s)]

}
. The following lemma provides useful properties of (3).
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Lemma 2. For any j ∈ {1, 2, . . . , n}, the following statements about (3) hold.

(i) The set
{
sj ≥ 0 : sj ≥ s[m∗(s)]

}
is nonempty and its minimum is attainable. Let cj(s−j) =

min
{
sj ≥ 0 : sj ≥ s[m∗(s)]

}
. There exist two constants m,m ∈ {1, 2, . . . , n} with m ≤ m such

that m∗(s) = m for all sj < cj(s−j) and m∗(s) = m for all sj ≥ cj(s−j). Moreover, j ∈ M(s)

if and only if sj ≥ cj(s−j).

(ii) f(s) as a function of sj can be written as

f(s) = (sj − cj(s−j))
+ + f(s1, . . . , sj−1, 0, sj+1, . . . , sn).

Lemma 2(i) introduces a value cj(s−j), which is critical to our analysis throughout the paper.

This value can be interpreted as the lowest score that an applicant must have to be on the offer

list, given the scores of other applicants, if the recruiter decides to stop. The number of offers,

m∗(s), is a step function of sj and it strictly increases only at sj = cj(s−j). Lemma 2(ii) provides

an explicit expression of f(s) as a function of sj . It can be seen that f is independent of sj if sj is

below cj(s−j) and is linearly increasing with slope 1 if sj is above cj(s−j). That is, sj affects f if

and only if applicant j is on the offer list.

Having established the properties of the maximal expected reward when the recruiter stops, we

proceed to study the recruiter’s optimal stopping policy. The following theorem summarizes the

structure of the optimal stopping rule and the optimal number of offers to make with respect to

each individual’s score.

Theorem 1. For t = 1, 2, . . . , T , there exists a pair of thresholds (Lt
j(qt, s

t
−j), U

t
j (qt, s

t
−j)) with

−∞ ≤ Lt
j(qt, s

t
−j) ≤ U t

j (qt, s
t
−j) ≤ ∞ for j = 1, 2, . . . , nt such that the following holds:

(i) The optimal stopping rule is

a∗t (qt, s
t) =


1 if 0 ≤ stj ≤ Lt

j(qt, s
t
−j),

0 if Lt
j(qt, s

t
−j) < stj < U t

j (qt, s
t
−j),

1 if stj ≥ U t
j (qt, s

t
−j).

(ii) There exist two constants mt,mt ∈ {1, 2, . . . , nt} with mt ≤ mt such that m∗
t (qt, s

t) = mt for

all stj ≤ Lt
j(qt, s

t
−j) and m∗

t (qt, s
t) = mt for all stj ≥ U t

j (qt, s
t
−j).

(iii) Applicant j is hired if and only if stj ≥ U t
j (qt, s

t
−j).
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Theorem 1(i) shows that the optimal stopping rule is characterized by two threshold levels

Lt
j(qt, s

t
−j) and U t

j (qt, s
t
−j). That is, if applicant j’s score is lower than Lt

j(qt, s
t
−j), then the recruiter

stops and makes no offers to j; if j’s score is higher than U t
j (qt, s

t
−j), then the recruiter also stops

but makes an offer to j; if the score is between Lt
j(qt, s

t
−j) and U t

j (qt, s
t
−j), then the recruiter waits.

Because Theorem 1(i) holds for any j, it implies that for any two applicants i and j, j’s score falls

within his or her waiting region (Lt
j(qt, s

t
−j), U

t
j (qt, s

t
−j)) if and only if i’s score also falls within his

or her waiting region (Lt
i(qt, s

t
−i), U

t
i (qt, s

t
−i)). This point will be clearer later in Theorem 2 where

we discuss two applicants simultaneously.

It is expected that an applicant will be on the offer list if and only if their score is high enough.

Somewhat surprising is the result that the recruiter may change from stopping to waiting as an

applicant’s score increases. For the recruiter, there is a trade-off between accepting qualified ap-

plicants already in the system (i.e., stopping) and waiting for potentially more qualified applicants

to arrive at the risk of losing the qualified applicants already in the system. When an applicant

has a very low score, the recruiter stops and makes an offer to other applicants with high scores.

Otherwise, these applicants may no longer be available in the next period, and the recruiter will be

left with applicants with very low scores. As the applicant’s score increases, the risk of the recruiter

being left with applicants with very low scores decreases. Therefore, the recruiter chooses to wait

in the hope that more qualified applicants will arrive in the next period. Finally, if the applicant’s

score increases further, then an offer to the applicant is warranted, and the recruiter stops to make

offers to the applicant as well as to other qualified applicants.

It would be useful to consider two special cases: p = 0 and p = 1. When p = 0, it is optimal for

the recruiter to delay all decisions to the end. In this case, Lt
j(qt, s

t
−j) = −∞ and U t

j (qt, s
t
−j) = ∞.

When p = 1, it is optimal for the recruiter to stop in every period. In this case, Lt
j(qt, s

t
−j) =

U t
j (qt, s

t
−j). In other words, the transition from stopping to waiting when a score increases does not

occur in these two special cases.

According to Theorem 1(ii), the optimal number of offers remains unchanged at mt when stj

increases from zero to Lt
j(qt, s

t
−j), and it remains unchanged atmt when stj increases from U t

j (qt, s
t
−j)

to infinity. The value mt can be the same as mt, in which case applicant j replaces another applicant

on the offer list when stj increases. It can also be strictly greater than mt. In Li and Yu (2021),

where the recruiter must stop at a fixed sequence of time epochs, the impact of increasing a score

on the total number of offers is bounded by one. This is not true in our setting. In some cases,

the optimal number of offers can change by more than one. Li and Yu (2021) show that in their

setting, there is a threshold policy to determine whether an applicant is on the offer list, and the
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threshold is independent of all scores in the same period if the changes in scores do not change the

order. Similarly, Theorem 1(iii) shows that an applicant is on the offer list if and only if their score

is higher than the threshold. The threshold U t
j (qt, s

t
−j), however, depends on the scores of all of the

other applicants.

To better understand Theorem 1, let us consider the following example.

Example 1. Consider a horizon of three periods with exactly three applicants arriving in each

period. Their scores follow a 6-point distribution: P(St
i = xj) = Pj , where xj and Pj are the jth

values in (10, 20, 50, 60, 90, 100) and (0.5, 0.2, 0.05, 0.05, 0.1, 0.1), respectively. Let G(qT+1 − d) =

u(qT+1− d)−+ o(qT+1− d)+ for u = 10 and some sufficiently large value o. In other words, overage

(i.e., qT+1 > d) is not allowed. We consider two cases with the parameters in Figure 1. In the first

case, the realized scores of applicants 2 and 3 in period 1 are (20, 60), and in the second case, their

scores are (60, 90).

Figure 1: (Color online) Optimal Number of Offers for s11

(a) (s12, s
1
3) = (20, 60)
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m
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1 )

(b) (s12, s
1
3) = (60, 90)
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0
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2

m
∗ 1
(0
,s

1 )

Notes. The parameters are d = 3 and p = 0.1.

Recall that the optimal number of offers to make in period t when the recruiter stops is defined

as m∗
t (qt, s

t) (see (2)). In Figure 1, we illustrate how m∗
1(0, s

1) changes with applicant 1’s score,

s11. When the recruiter waits (i.e., a∗1(0, s
1) = 0), we let m∗

1(0, s
1) = 0. The figures confirm the

two-threshold stopping rule shown in Theorem 1(i). For example, in Figure 1(a), when s11 < 50 or

s11 > 60, the recruiter stops; when s11 = 50 or s11 = 60, the recruiter waits. Furthermore, the figures
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show that in general, m∗
1(0, s

1) increases with s11 when the recruiter stops and may strictly increase

only when s11 increases from below the lower threshold to above the higher threshold. In addition,

applicant 1 is hired after his or her score surpasses 90 in both Figures 1(a) and 1(b). In summary,

all of these observations are consistent with Theorem 1.

Interestingly, from Figure 1(b), we can see that when s11 changes from 20 to 90, applicant 2 is

disadvantaged, as he or she is replaced by applicant 1 on the offer list. However, when s11 increases

from 60 to 90, applicant 3 is better off, as the recruiter changes from waiting to stopping, and he or

she is hired. This raises the question of what impact competitors becoming more qualified has on

an applicant’s likelihood of receiving an offer. Because when the score of an applicant changes, the

optimal stopping rule is characterized by two thresholds, to answer the above question, we examine

how the two thresholds depend on the score of another applicant, and the results will be shown in

Theorem 2. We provide the following lemma, which generalizes Lemma 2 and is a building block

for Theorem 2.

For ease of exposition, we first give some notations. As for Lemma 2(i), we define ci(s−i) =

min{si ≥ 0 : si ≥ s[m∗(s)]}, i = 1, 2, . . . , n, where m∗(s) is the largest maximizer in (3). For any

i, j ∈ {1, 2, . . . , n} and i > j, let

ŝ = (s1, . . . , sj−1, 0, sj+1, . . . , si−1, si, si+1, . . . , sn),

and š = (s1, . . . , sj−1, ci(ŝ−i), sj+1, . . . , si−1, si, si+1, . . . , sn).

By definition, ci(ŝ−i) is the lowest score that applicant i must have to be on the offer list, given

other scores ŝ−i, if the recruiter decides to stop, and ci(š−i) has a similar meaning. Both ci(ŝ−i)

and ci(š−i) are independent of si and sj . The two vectors ŝ and š are introduced for the purpose

of defining the critical points ci(ŝ−i) and ci(š−i). They are constructed as follows. We start with

(s1, . . . , sj−1, 0, sj+1, . . . , si−1, 0, si+1, . . . , sn), where both sj and si are 0. We first increase sj to

ci(ŝ−i), which is the lowest value required for j to be included on the offer list. We then increase si

to the critical point ci(š−i), which is the lowest value required for i to be included on the offer list.

Lemma 3. For any i, j ∈ {1, 2, . . . , n} with i > j, the following statements about (3) hold.

(i) ci(ŝ−i) ≥ ci(š−i), and f(s) as a function of sj and si can be written as

f(s) =


(
sj −max

{
min

{
b̂, si

}
, ci(ŝ−i)

})+
+ f(ŝ) if ci(ŝ−i) = ci(š−i),

(sj − (ci(ŝ−i)−min {ci(ŝ−i), si}+min {ci(š−i), si}))+ + f(ŝ) if ci(ŝ−i) > ci(š−i),

where b̂ is a constant with b̂ ≥ ci(ŝ−i) = ci(š−i).
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(ii) If si ≥ sj, then f(s+ δei) ≥ f(s+ δej) for any δ ≥ 0.

Lemma 2 shows that f as a function of sj is piecewise linear with a breakpoint at cj(s−j).

Lemma 3(i) further shows how the breakpoint depends on si and provides an explicit expression

of f(s) as a function of both sj and si. This expression depends on whether ci(ŝ−i) = ci(š−i) or

ci(ŝ−i) > ci(š−i). Lemma 3(ii) shows that the marginal value of increasing a higher score is higher

than that of increasing a lower score.

We are now ready to present our second main result about the optimal policy. The result shows

how the two thresholds in Theorem 1 change when the score of another applicant changes. For

any i ∈ {1, 2, . . . , nt} and given (qt, s
t
−i), we define cti(qt, s

t
−i) = min

{
sti ≥ 0 : sti ≥ st[m∗

t (qt,s
t)]

}
. We

define (ŝt, št, b̂t) similarly as we do (ŝ, š, b̂) in Lemma 3, respectively.

Theorem 2. For t = 1, 2, . . . , T and i, j ∈ {1, 2, . . . , nt} that satisfies i > j, let β = b̂t if

cti(qt, ŝ
t
−i) = cti(qt, š

t
−i), and β = cti(qt, š

t
−i) if cti(qt, ŝ

t
−i) > cti(qt, š

t
−i). Then, limsti→∞ Lt

j(qt, s
t
−j) =

limsti→∞ U t
j (qt, s

t
−j) = β, and the following is true.

(i) Lt
j(qt, s

t
−j) is continuously decreasing for sti ≤ cti(qt, ŝ

t
−i) and continuously increasing for sti ≥

cti(qt, ŝ
t
−i).

(ii) U t
j (qt, s

t
−j) is continuously increasing for sti ≤ β and continuously decreasing for sti ≥ β.

The results presented in Theorem 2 are visualized in Figure 2. Figure 2(a) refers to the case

in which cti(qt, ŝ
t
−i) > cti(qt, š

t
−i), and Figure 2(b) refers to the case in which cti(qt, ŝ

t
−i) = cti(qt, š

t
−i).

In each figure, the upper dark curve represents the upper threshold U t
j (qt, s

t
−j) for applicant j as a

function of i’s score sti, and the lower light curve denotes the lower threshold Lt
j(qt, s

t
−j) for j as a

function of sti. Both are symmetric around the 45-degree line, because interchanging the ith and jth

elements of the score vector st does not alter the analysis. Thus, if we treat the y-axis (representing

j’s score stj) as the x-axis, we obtain the upper and lower curves for i, which behave identically to

those of j. According to Theorem 1(i), there are five scenarios for each of the two cases described

above. For example, in Figure 2(a), (1) if the score pair (sti, s
t
j) falls into region I, both applicants

j and i are hired; (2) if (sti, s
t
j) is in region II, applicant j is hired but i is not; (3) if (sti, s

t
j) is in

region III, applicant i is hired but j is not; (4) if (sti, s
t
j) is in region IV, the recruiter chooses to

stop but neither applicant j nor i is hired; and (5) if (sti, s
t
j) is in region V, the recruiter chooses to

wait. Figure 2(b) can be similarly explained.

Theorem 2 offers additional insights that are not in Theorem 1. First, Figure 2 illustrates

that an applicant is hired if and only if his or her score is sufficiently high to exceed the upper
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Figure 2: (Color online) Optimal Policy for Hiring Applicants j and i
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,ŝ

t −
i)

I

II

III

IV

V
a b c

U t
j(qt, s

t
−j)

Lt
j(qt, s

t
−j)

(b) If cti(qt, ŝ
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dark curve, which is consistent with Theorem 1. Moreover, the upper threshold is quasi-concave

in the competitor’s score. Second, for any given stj , there exist two thresholds such that applicant

j is hired if and only if sti is either greater than the larger threshold or smaller than the smaller

threshold. Third, from region V, if one applicant’s score, say j’s, falls within their waiting region

(Lt
j(qt, s

t
−j), U

t
j (qt, s

t
−j)), all other applicants’ scores must also fall within their respective waiting

regions. Fourth, as demonstrated in Theorem 1(ii), when the score pair (sti, s
t
j) changes within each

region in Figure 2, the optimal number of offers remains unchanged. Among regions {I, II, III, IV},
the optimal number of offers is highest in I and lowest in IV. The optimal numbers of offers in II

and III are the same, and are in the middle.

Figure 2 also presents six cases in which applicant i’s score increases while j’s score is kept

unchanged. In Figure 2(a), (a1) when the scores change from a to b, the recruiter will change

from stopping to waiting; (a2) when (sti, s
t
j) moves from point b to c, the recruiter will change from

waiting to stopping and hire both applicants j and i; and (a3) when (sti, s
t
j) moves from point a to

c, applicant j, who was initially not hired, will be hired. In Figure 2(b), (b1) when (sti, s
t
j) moves

from point e to f , the recruiter, who initially stopped with applicant j on the offer list, will now

wait, and hence, no one is hired; (b2) when (sti, s
t
j) moves from point f to g, the recruiter will stop

and hire applicant i but not j; and (b3) when (sti, s
t
j) moves from point e to g, applicant j, who was
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initially on the offer list, will be replaced by i.

These cases together reveal several interesting findings. Does an applicant’s likelihood of being

hired increase or decrease when another applicant’s score increases? Cases (b1) ((sti, s
t
j) moves

from e to f) and (b3) (e to g) illustrate that applicant j is indeed disadvantaged by an increase

in applicant i’s score. This is expected because they are competing for a limited number of jobs.

However, from case (a2) (b to c) and (a3) (a to c), we also find that an applicant may actually

benefit from an increase in another applicant’s score. Such a “free riding” phenomenon is somewhat

counter-intuitive. In case (a2), recruiter switches from waiting to stopping and hiring both. Once

the recruiter decides to stop in the current period, they may need to wait longer in the following

periods for the market to become sufficiently thick again. As a result, the recruiter is willing to

lower their standards to a level that applicant j can meet. In case (a3), recruiter switches from

stopping and hiring neither of them to stopping and hiring both. The recruiter needs to consider

both hiring qualified applicants and meeting the target at the same time. Hiring both of them,

as opposed to hiring only one of them, moves the total number of hired applicants closer to the

target. As a result, the recruiter can afford to be more patient in waiting for qualified applicants in

subsequent periods.

Figure 3: (Color online) Optimal Policy for Hiring Applicants j and i When p = 1

0 cti(qt, ŝ
t
−i) β
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ct i(
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,ŝ
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−j)

Notes. When p = 1, cti(qt, ŝ
t
−i) = cti(qt, š

t
−i) always holds.

To see why the potential waiting is the real driver behind the free riding phenomenon, let us
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look at the special case when p = 1. In this case, as applicants stay in the systems for only one

period, it is optimal to stop every period. It is easy to show that cti(qt, ŝ
t
−i) = cti(qt, š

t
−i). Figure

3 illustrates how the optimal policy for applicant j changes with i’s score. This figure is a special

case of Figure 2(b). In the figure, Lt
j(qt, s

t
−j) and U t

j (qt, s
t
−j) coincide along the solid curve, causing

the waiting region to shrink to the empty set. Therefore, applicant j is hired if stj is above the solid

curve, and rejected otherwise. Additionally, the curve increases with sti, suggesting that the two

applicants are competing and that applicant j cannot benefit from a more qualified applicant i. In

other words, when p = 1, the free riding phenomenon does not occur.

Theorems 1 and 2 can be generalized to any n ∈ {1, 2, . . . , nt} scores. Although not as intuitive

as Theorems 1 and 2, the following theorem gives a “global view” of the optimal policy in general.

Let δti represent whether applicant i ∈ {1, 2, . . . , n} is hired. It is equal to one if i is hired and zero

otherwise.

Theorem 3. There exists a unique collection of sets
{
Pt
I
}
I⊂{1,2,...,n} in Rn

+ such that it is pairwise

disjoint and each Pt
I is connected. Let Ct = Rn

+ \⋃I⊂{1,2,...,n} Pt
I . Any ray

{
(sti)i∈{1,2,...,n} : s

t
j ≥ 0

}
in Rn

+ can sequentially intersect at most three sets Pt
I , Ct and Pt

J . Furthermore, the following

statements hold.

(i) If (sti)i∈{1,2,...,n} ∈ Ct, then a∗t (qt, s
t) = 0.

(ii) If (sti)i∈{1,2,...,n} ∈ Pt
I , then δti = 1 for all i ∈ I and δti = 0 for all i ∈ {1, 2, . . . , n} \ I. In

addition, δti is constant for any i ∈ {n+ 1, n+ 2, . . . , nt} on Pt
I .

(iii) There exists an increasing function Mt : {0, 1, . . . , n} → {0, 1, . . . , nt} such that m∗
t (qt, s

t) =

Mt(m) for any (sti)i∈{1,2,...,n} ∈ Pt
I with |I| = m.

Theorem 3 demonstrates that the score space Rn
+ can be partitioned into at most 2n+1 nonempty

sets. In particular, the recruiter waits when the n scores fall within region Ct; otherwise, the

recruiter stops. The waiting region Ct is positioned “centrally”, in the sense that it lies between two

stopping regions along any axis in the score space. Within each stopping region Pt
I , for applicants

in {1, 2, . . . , n}, only those in I can be hired; the hiring status of applicants not in {1, 2, . . . , n}
remains unchanged. Moreover, due to the permutation invariant of the optimal policies, there are(
n
|I|
)
regions corresponding to exactly |I| applicants in {1, 2, . . . , n} to be hired. The optimal number

of total offers to make is the same across all these
(
n
|I|
)
regions and increases with |I|. Therefore,

when n = nt, the optimal number of offers to make and the specific applicants to whom offers

are made can be fully characterized. As illustrated in Theorems 1 and 2, when n = 1, there are
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21 + 1 = 3 regions: Pt
∅ represents the lower region, Pt

{1} corresponds to the upper region, and Ct

denotes the middle waiting region. For n = 2, there are 22 + 1 = 5 regions. The meaning of these

regions is also consistent with Theorem 3, as shown in Figure 2.

5 Impact of Score Dispersion

What happens to the optimal policy or the total expected reward of the recruiter if the current scores

are more dispersed? The following theorem examines how the optimal policy and the recruiter’s

reward are affected if two applicants’ scores in the current period get closer to each other while the

mean is kept unchanged.

Theorem 4. For any (qt, s
t) with sti > stj and δ > 0 such that sti−δ ≥ stj+δ, we have the following:

(i) Vt(qt, s
t) ≥ Vt(qt, s

t + δej − δei).

(ii) If i, j ∈ Mt(qt, s
t), then i, j ∈ Mt(qt, s

t + δej − δei) and Vt(qt, s
t) = Vt(qt, s

t + δej − δei).

(iii) If a∗t (qt, s
t) = 1 and i, j /∈ Mt(qt, s

t), then a∗t (qt, s
t+δej−δei) = 1, i, j /∈ Mt(qt, s

t+δej−δei),

and Vt(qt, s
t) = Vt(qt, s

t + δej − δei).

Figure 4: (Color online) Optimal Policy for Hiring Applicants j and i When sti and stj Are Closer
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Notes. We use Figure 2(a) as an example to illustrate.
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According to Theorem 4(i), in general, the recruiter benefits from a more diverse pool of appli-

cants. This is expected because they only hire the top applicants, and the more diverse the scores

are, the more qualified the top applicants are. Theorem 4(ii) and (iii) show that if two applicants

are on the offer list or if the recruiter stops but neither applicant is on the offer list, then bringing

their scores closer will not affect the recruiter’s optimal policy. In this case, the recruiter’s payoff

also remains the same because a closer score pair does not alter the total score on the offer list.

However, in other situations, the recruiter may be worse off, and whether the two applicants are

hired depends on the context. Specifically, as illustrated in Figure 4, if applicant i is hired but j is

not (region III), bringing their scores closer can result in four outcomes: (1) i is still on the offer list

and j is not; (2) the recruiter waits; (3) the recruiter hires both i and j; or (4) the recruiter stops,

but neither i nor j is hired. Similarly, if the recruiter decides to wait (region V), a closer score pair

can lead to three scenarios: (1) the recruiter continues to wait; (2) the recruiter hires both i and j;

or (3) the recruiter stops, but neither i nor j is hired.

The recruiter also benefits from a pool of applicants in the future with more variable scores or

stochastically larger scores. To measure score variability, we consider the convex order from the

theory of stochastic comparisons, which is commonly used in the operations literature in studies of

the impact of variability (e.g., Lu et al. 2003, Levi et al. 2024). If S̃t is larger than St in convex

order, meaning that Eϕ(S̃t) ≥ Eϕ(St) for any nt-dimensional convex function ϕ, then the total

expected reward of the recruiter is higher under the distribution of S̃t. Roughly speaking, S̃t is

more likely than St to take on “extreme” values over the support.

6 Numerical Studies

In this section, we conduct numerical studies to complement our theoretical analysis and quantify

the benefit of endogenously determining the optimal times to stop and make offers. We define

the value of waiting as the difference in the recruiter’s total expected reward in our model and the

expected reward when the recruiter must stop in every period. We first test the exact value of waiting

under some simple parametric settings (including short horizons, known numbers of applicants, and

discrete and finite score distributions). For more general and realistic scenarios (longer horizons,

continuous score distributions, and random arrivals), exact evaluation is impossible. Therefore,

we propose an easily implementable heuristic based on our theoretical findings, and we utilize it

to estimate the value of waiting. For all of the numerical studies, we set the penalty cost to

G(x) = ux− + ox+.
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6.1 Exact Evaluation

In this subsection, we measure the value of waiting. The model in which the recruiter must stop

in every period is studied by Li and Yu (2021). The dynamic programming formulation for that

model is as follows:

V ′
t (qt, s

t) = max
0≤mt≤nt

{
mt∑
i=1

st[i] + EV ′
t+1(qt +mt,S

t+1(st, 1))

}
,

where the boundary condition is V ′
T+1(qT+1) = −G(qT+1 − d).

Table 1: Value of Waiting

d = 1 d = 3 d = 5

p 0.01 0.10 0.30 0.60 0.01 0.10 0.30 0.60 0.01 0.10 0.30 0.60

P = (0.80, 0.15, 0.05)

X = (1, 20, 100) 7.89 7.21 5.32 2.46 4.79 2.83 1.70 0.85 0.60 0.35 0.22 0.11

X = (1, 50, 100) 10.78 9.29 5.26 1.51 2.99 1.60 0.64 0.18 0.30 0.14 0.03 0.01

X = (1, 80, 100) 5.95 4.24 1.78 0.54 0.82 0.23 0.03 0.00 0.07 0.01 0.00 0.00

X = (20, 50, 80) 7.29 6.27 3.54 0.99 1.81 0.96 0.38 0.10 0.16 0.07 0.02 0.00

P = (0.70, 0.20, 0.10)

X = (1, 20, 100) 2.13 2.02 1.61 0.81 4.90 2.87 1.67 0.67 1.51 0.76 0.42 0.14

X = (1, 50, 100) 4.69 4.41 3.40 1.44 6.02 3.39 1.90 0.87 1.41 0.79 0.42 0.18

X = (1, 80, 100) 3.91 3.49 2.24 0.66 2.64 1.18 0.50 0.14 0.48 0.19 0.05 0.01

X = (20, 50, 80) 3.41 3.20 2.46 1.02 4.04 2.27 1.26 0.56 0.88 0.49 0.26 0.11

P = (1/3, 1/3, 1/3)

X = (1, 20, 100) 0.01 0.01 0.01 0.00 0.12 0.10 0.09 0.05 0.38 0.27 0.21 0.10

X = (1, 50, 100) 0.01 0.01 0.01 0.01 0.34 0.28 0.21 0.12 0.99 0.72 0.40 0.19

X = (1, 80, 100) 0.02 0.02 0.02 0.01 0.32 0.25 0.17 0.07 0.69 0.47 0.25 0.08

X = (20, 50, 80) 0.01 0.01 0.01 0.01 0.26 0.22 0.16 0.09 0.74 0.54 0.30 0.14

Notes. % VoWs.

To evaluate the value of waiting, we try various levels of deterministic arrivals, point-type

score distributions, departure probabilities, and hiring targets. Different combinations yield similar

patterns in the numerical studies, and we therefore only report the results with the parameters in

Table 1. Specifically, we consider a horizon of five periods with exactly three applicants arriving

in each period, and their scores follow a 3-point distribution: P(St
i = xj) = Pj , where xj and
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Pj are the jth values in X = (x1, x2, x3) and P = (P1, P2, P3), respectively. The values taken

by the system parameters are u = 10, o is sufficiently large such that overage is not allowed,

d ∈ {1, 3, 5}, p ∈ {0.01, 0.1, 0.3, 0.6}, X ∈ {(1, 20, 100), (1, 50, 100), (1, 80, 100), (20, 50, 80)}, and

P ∈ {(0.8, 0.15, 0.05), (0.7, 0.2, 0.1), (1/3, 1/3, 1/3)}.
We measure the value of waiting by the following expression:

VoW =
EV1(0,S

1)− EV ′
1(0,S

1)

EV ′
1(0,S

1)
× 100%,

where VoW is the value of waiting. As we observe from Table 1, the VoW can be as high as 10.78%.

Waiting generates considerable benefits when highly qualified applicants arrive less frequently than

less qualified applicants (e.g., P = (0.8, 0.15, 0.05) or (0.7, 0.2, 0.1)), the probability that applicants

depart is low (e.g., p = 0.01, 0.1, and 0.3), and the hiring target is low (e.g., d = 1 or 3). Under

these conditions, the recruiter can effectively exercise the options of waiting.

6.2 Approximation

So far, we have accurately tested the value of waiting under simple parametric settings. Evaluating

the value of waiting in more realistic settings, however, can be computationally challenging because

of the large dimensions of the score space. For example, to compute the total reward for a simple

case with a k-point score distribution and exactly n arrivals in each period, the dimension of the

state space can be as large as knT , which is only feasible for small (k, n, T ). In this subsection, we

focus on approximations. To this end, we first propose a threshold-based heuristic that is easy to

implement, is easy to compute, and performs better than some known heuristics in the literature.

6.2.1 Threshold-based Heuristic

Our results and analysis in Section 4 show that the optimal stopping rule is characterized by two

thresholds. A key implication of the stopping rule is that when there are enough applicants whose

scores are intermediate, the risk of waiting is small because the probability of being left with only

applicants with very low scores is small. Therefore, the recruiter waits and hopes that more qualified

applicants will arrive in the next period. Our proposed threshold-based heuristic is directly inspired

by this idea.

Consider a system state (qt, s
t) in period t. Let ut be the solution of

E

NB
t∑

i=1

1(St
B,i ≥ ut)

 =
(d− qt)

+

T − t+ 1
, (4)
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where NB
t is the size of St

B, which was defined in Section 3, and St
B,i is the ith element in St

B.

Denote λt = ENB
t (we assume that it is finite). We set ut = 0 if λt < (d − qt)

+/(T − t + 1).

The right side of Equation (4) is the average number of applicants that need to be hired in each

remaining period, and the left side is the expected number of applicants whose scores are higher

than ut. Therefore, the solution ut of Equation (4) can be interpreted as the minimum requirement

for applicants to be on the offer list or as the threshold for the recruiter to identify high scores.

Next, let lt be the solution of

E

NB
t∑

i=1

1(lt < St
B,i < ut)

 =
(d− qt)

+

T − t+ 1
,

where we set lt = 0 if λt < 2(d−qt)
+/(T − t+1). The left side of the above equation is the expected

number of applicants whose scores are within (lt, ut). We consider scores in (lt, ut) as intermediate

scores.

Let Kt = (d − qt)
+/(T − t + 1). By some simple algebra, we have that ut and lt are the

(1−Kt/λt)
+th and (1− 2Kt/λt)

+th quantiles of the score distribution function F , respectively:

ut = inf

{
s : F (s) ≥

(
1− Kt

λt

)+
}

and lt = inf

{
s : F (s) ≥

(
1− 2Kt

λt

)+
}
.

The threshold-based heuristic that we propose works as follows:

Step 1. Count the number of applicants whose scores are higher than ut, i.e., n
u
t =

∑|st|
i=1 1(s

t
i ≥ ut).

If nu
t ≤ Kt, move to Step 2. If nu

t > Kt, accept applicants whose scores are higher than ut in

descending order until d is met. After d is met, accept the remaining applicants if and only if

their scores are higher than the marginal overage cost. Then, move to Step 3.

Step 2. Count the number of applicants whose scores are within (lt, ut), i.e., n
l
t =

∑|st|
i=1 1(lt < sti <

ut). If either n
l
t > Kt/(1− p)2 or nu

t = 0 and d is not met, wait; otherwise, accept applicants

whose scores are higher than ut in descending order until d is met. After d is met, accept

the remaining applicants if and only if their scores are higher than the marginal overage cost.

Then, move to Step 3.

Step 3. Repeat the above two steps until period T . At period T , accept applicants greedily in

descending order until d is met. Then, accept the remaining applicants if and only if their

scores are higher than the marginal overage cost.

The thresholds lt and ut and Kt are all independent of the current scores. This greatly reduces

the computational burden. In addition, the proposed heuristic uses the current score information
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to determine whether to stop or to wait based on (lt, ut,Kt). If there are enough applicants with

high scores (i.e., nu
t > Kt), the recruiter hires all of them as long as the target is not met. If the

number of applicants with high scores is insufficient (i.e., nu
t ≤ Kt) but the number of applicants

with intermediate scores is adequate (i.e., nl
t > Kt/(1− p)2), the recruiter waits. If the number of

applicants with intermediate scores is also insufficient (i.e., nl
t ≤ Kt/(1−p)2), the recruiter hires all

applicants with high scores until the target is met as long as nu
t > 0. Here we add a term (1− p)2

for the waiting decision to take departures into account. Therefore, the recruiter will be less likely

to wait if the departure probability is higher. Finally, because ut decreases with Kt, the average

number of vacancies to be filled per period, when Kt is larger, the recruiter lowers the standard

(i.e., smaller ut).

6.2.2 Approximated Value of Waiting

In this subsection, we examine the value of waiting using the threshold-based heuristic that we

proposed earlier in more general parametric settings. For the model without waiting, we similarly

introduce a simple single-threshold heuristic to compute the reward.

Table 2: Approximated Value of Waiting

T = 5 T = 8

p = 0.1 p = 0.3 p = 0.1 p = 0.3

λ 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

σ = 30

d = 2 7.03 2.39 1.16 0.88 6.36 1.91 1.08 0.63 4.62 1.42 0.89 0.58 4.51 1.34 0.95 0.62

d = 4 6.52 1.90 0.64 0.36 4.82 1.74 0.63 0.37 4.72 1.47 0.82 0.40 3.55 1.03 0.60 0.42

d = 6 4.70 2.29 0.57 0.10 3.13 1.65 0.66 0.17 3.86 1.47 0.47 0.25 3.02 1.18 0.46 0.19

d = 8 2.70 2.18 0.61 0.13 2.07 1.60 0.71 0.16 3.68 1.41 0.44 0.04 2.52 1.10 0.24 0.10

d = 10 1.19 2.18 0.91 0.09 0.92 1.17 0.58 0.14 3.29 1.46 0.34 0.05 2.10 1.00 0.32 0.10

σ = 50

d = 2 6.87 2.58 1.88 1.57 6.11 2.29 1.67 1.33 4.31 2.15 1.91 2.00 3.78 1.92 1.48 1.49

d = 4 4.72 1.97 0.91 0.72 3.87 1.70 0.84 0.57 3.96 1.63 1.06 1.04 3.46 1.51 0.86 0.80

d = 6 3.32 1.57 0.74 0.38 2.51 1.58 0.70 0.28 3.34 1.24 0.67 0.52 2.61 1.22 0.62 0.39

d = 8 1.71 1.61 0.55 0.10 1.42 1.29 0.53 0.18 2.52 1.26 0.56 0.17 2.12 1.01 0.37 0.24

d = 10 0.79 1.33 0.39 0.15 0.65 0.95 0.38 0.15 1.88 1.08 0.46 0.19 1.71 0.78 0.26 0.08

Notes. The results are based on 5,000 random samples. % ṼoWs.
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The heuristic for the model without waiting is a single-threshold policy governed by ut that

solves Equation (4). In each period, the recruiter only hires applicants whose scores are higher than

ut in descending order. After the target d is met, the recruiter accepts applicants if and only if their

scores are higher than the marginal overage cost.

We assume that the number of applicants arriving in each period follows a Poisson distribution

with rate λ and that their scores follow a normal distribution with mean µ and standard deviation

σ. The system parameters are set to the following values: u = 100, o = 180, µ = 100, σ ∈ {30, 50},
T ∈ {5, 8}, p ∈ {0.1, 0.3}, λ ∈ {2, 4, 6, 8}, and d ∈ {2, 4, 6, 8, 10}. We generate 5,000 random samples

and compute the average rewards for the two heuristics. In total, 160 instances are reported.

We measure the approximated value of waiting by the following expression:

ṼoW =
EV TB

1 (0,S1)− EV ND
1 (0,S1)

EV ND
1 (0,S1)

× 100%,

where ṼoW is the approximated value of waiting and V TB
1 and V ND

1 represent the maximal total

rewards under the threshold-based heuristic for our model and the single-threshold heuristic for the

model without waiting, respectively.

Table 3: Average Number of Periods Waited

T = 5 T = 8

p 0.1 0.3 0.1 0.3

d = 2 1.97 2.01 3.63 3.75

d = 4 1.75 1.68 3.51 3.55

d = 6 1.52 1.31 3.17 3.12

d = 8 1.27 0.98 2.98 2.71

d = 10 1.04 0.73 2.65 2.29

Table 2 presents the approximated value of waiting ṼoW for the 160 instances. Overall, the

ṼoW is higher if the target is lower and the departure probability is lower, which is consistent with

the results in Section 6.1. In addition, the ṼoW is higher when the arrival rate is lower because

when the arrival rate is low, it is harder to hire qualified applicants as soon as they arrive in a

period and the need for waiting is greater. In Table 3, we report the average number of periods

that the recruiter chooses to wait over the season (among the 5,000 randomly generated samples

and the eight groups of (λ, σ) under each combination of (T, p, d)). The recruiter chooses to wait
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more if the recruitment season is longer, the hiring target is lower, and the departure probability is

lower. Essentially, under these conditions, the recruiter has less urgency to extend offers.

Finally, we compare the performance of our threshold-based heuristic with other heuristics (e.g.,

those suggested in Du et al. (2024)), and we find that our heuristic not only is easier to compute

but also performs better in general.

7 Waiting Lists

In our previous analysis, we made the assumption that once the recruiter stops, applicants who are

not accepted depart immediately and cannot be recalled later. In this subsection, we consider an

extension where applicants who are not accepted will not depart immediately. Instead, they are

put on a waiting list and can be considered at a later time.

Being placed on a waiting list changes an applicant’s trade-off between waiting and pursuing

other options. We assume that applicants stay on waiting lists for at most k rounds, where the

periods between two adjacent stops form a round. In other words, if the applicants have been on

waiting lists for k rounds, they will give up and pursue other options.5 We describe the k waiting

lists by (yt,1,yt,2, . . . ,yt,k), where yt,l = (yt,l1 , yt,l2 , . . . , yt,l
nl
t
) represents the scores of the applicants

who can be on the waiting list for at most l more rounds. For notational convenience, we let

yt,k+1 = st and yt = (yt,1,yt,2, . . . ,yt,k+1), and we simply call each yt,l a list. The random variable

W t,l
i represents whether applicant i who is on the lth list in period t departs in period t+ 1, where

W t,l
i = 1 if he or she departs in the next period and W t,l

i = 0 otherwise. The departure probability

of each applicant is p ∈ (0, 1). We still use at to denote the stopping decision. If the recruiter waits

(at = 0), more applicants will be available in the next period, while some on yt may depart; if the

recruiter stops (at = 1), they rank the nl
t applicants on each yt,l and then determine the number of

offers to make, ml
t, on each yt,l. Let mt = (m1

t ,m
2
t , . . . ,m

k+1
t ) and nt = (n1

t , n
2
t , . . . , n

k+1
t ).

The scores of the applicants on yt transition from period t to t+1 as follows: Yt+1(yt,mt, at) =

(Yt+1,1,Yt+2,1, . . . ,Yt+1,k+1), where for 1 ≤ l ≤ k,

Yt+1,l(yt,mt, at) =


Ŷt+1(yt,l) if at = 0,

Ŷt+1
(
yt,l+1

[ml+1
t +1]

, yt,l+1

[ml+1
t +2]

, . . . , yt,l+1

[nl+1
t ]

)
if at = 1.

When at = 0, Ŷt+1(yt,l) = (yt,li )
i∈

{
j∈{1,2,...,nl

t}:W t,l
j =0

}, which represents the scores of the applicants

5Another way to think about this is that applicants who have not received an offer after k rounds are most likely

those who have very low scores, and the recruiter will have no need to recall them.

25



who are on the lth list in period t and have not departed in period t+1 if the recruiter waits. Sim-

ilarly, when at = 1, Ŷt+1
(
yt,l+1

[ml+1
t +1]

, yt,l+1

[ml+1
t +2]

, . . . , yt,l+1

[nl+1
t ]

)
= (yt,li )

i∈
{
j∈Ω:W t,l+1

j =0
}, which represents

the scores of the applicants who are on the (l + 1)th list and not hired in period t and have not

departed in period t + 1 if the recruiter stops. Here, Ω is the set of indices of the applicants on

yt,l+1 who do not receive an offer in period t.

The scores of the applicants who have not been put on waiting lists have the following transitions:

Yt+1,k+1(yt,mt, at) = St+1(yt,k+1, at). The dynamic programming formulation is as follows:

V̂t(qt,y
t) = max

{
EV̂t+1(qt,Y

t+1(yt,0, 0)), max
0≤mt≤nt

Ĵt(qt,mt,y
t)

}
,

where 0 is the zero vector and

Ĵt(qt,mt,y
t) =

k+1∑
l=1

ml
t∑

i=1

yt,l[i] + EV̂t+1

(
qt +

k+1∑
l=1

ml
t,Y

t+1(yt,mt, 1)

)
.

The boundary condition is V̂T+1(qT+1,y
T+1) = −G(qT+1 − d). We let the optimal stopping rule

a∗t (qt,y
t) be such that

V̂t(qt,y
t) =


EV̂t+1(qt,Y

t+1(yt,0, 0)) if a∗t (qt,y
t) = 0,

max
0≤mt≤nt

Ĵt(qt,mt,y
t) if a∗t (qt,y

t) = 1,

and define the optimal number of offers to make as

m∗
t (qt,y

t) = argmax
0≤mt≤nt

Ĵt(qt,mt,y
t).

When there are multiple maximizers, ml∗
t (qt,y

t) is defined as the largest one. A simple sample-path

argument can show that for each list yt,l, the optimal policy for issuing offers is of a cutoff type:

an applicant receives an offer only if all of the more qualified applicants on the same list receive an

offer. As a special case, when k = 0, the model above reduces to the base model discussed earlier.

When k ≥ T , the recruiter can recall any applicant who has not yet received an offer.

To keep track of the applicants on waiting lists, the state variables in the dynamic programs

need to increase, which poses additional challenges in both analysis and computation. However, the

main qualitative results that we showed earlier continue to hold.

Theorem 5.

(i) Theorems 1, 2, and 4 hold for applicants on yt,1.

(ii) For applicant j on yt,l, l > 1,
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(1) there exists a threshold U t,l
j ∈ R+ such that applicant j is hired if and only if yt,lj ≥ U t,l

j .

Moreover, ml∗
t is constant for all yt,lj ≥ U t,l

j ;

(2) for any yt,li > yt,lj and δ > 0 such that yt,li − δ ≥ yt,lj + δ, the total reward of the recruiter

under yt,l + δej − δei is lower than that under yt,l.

(iii) For applicants i and j on yt,l′ and yt,l, respectively, with l′ < l, if yt,l
′

i ≥ yt,lj , then applicant i

is hired if applicant j is hired.

Theorem 5(i) and (ii) show that the main qualitative results extend to the case with waiting

lists and that these results are robust. What is crucial is that placing applicants on a waiting list

will change their behavior. Part (iii) is new. Different lists are not treated the same way. The

recruiter sets a lower threshold for an older list (on which applicants have been waiting longer) than

for a more recent one because there is more urgency to make offers to those on the older list. This

strategy is similar in spirit to clearing sales of perishable inventories, where older inventories should

be cleared before younger ones (e.g., Li et al. 2016). A more general model of the waiting lists would

assume a higher departure probability for those on the lists, though this would not qualitatively

change the main results.

8 Concluding Remarks

In this paper, we explore the option of waiting in a rolling recruitment process where applicants

depart stochastically. We characterize the optimal polices about the stopping rule and the number

of offers made that maximize the recruiter’s total reward over the recruitment season. Our findings

show that when an applicant’s score increases, the recruiter may change from stopping to waiting

for a thicker market, and then stopping again when the score is sufficiently high. Applicants may be

disadvantaged when another applicant’s score increases, but they may also benefit from an increase

in another applicant’s score. Furthermore, the recruiter’s reward is higher when the applicant scores

in the current period or in future periods are more dispersed. Our numerical studies show that the

value of waiting can be substantial when highly qualified applicants arrive infrequently, the hiring

target is not too high, the arrival rate is low, or the departure rate is low. Our analytical analysis

shows how such value can be realized through following the optimal policies or heuristics that are

inspired by the optimal policies.

In our previous analysis, we made the assumption that all of the applicants available in a period

depart the system in the next period with the same probability. Our main results hold when
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this assumption is relaxed. Another assumption that we made is that departures and scores are

independent. Although this assumption is common in the literature (e.g., Akbarpour et al. 2020,

Ashlagi et al. 2023, Kesselheim et al. 2024), in reality, departures depend on outside options, which

in turn depend on applicant scores (i.e., qualifications). It would be a major undertaking to extend

our model to incorporate the dependency between the departures and scores, and similar optimal

policies hold only under some special cases of this dependency.

This study provides several other directions for future research. For example, it would be

interesting to consider the possibility of applicants rejecting their offers in our model. Because

incorporating such random yields into the rolling recruitment process substantially complicates

the optimal policies, as shown in Du et al. (2024), approximations and heuristics, as opposed to

structural properties, should be the focus. In our model, we assumed that applicants’ true scores are

known as soon as they arrive in a period. In practice, however, there might be bias in evaluations

of applicants (Salem and Gupta 2023), or the true scores may be known only after applicants go

through multiple costly tests (Du and Li 2020). In the latter case, the recruiter must determine how

many applicants should be extended offers, how many should be rejected, and how many should

proceed to the next test before an accept/reject decision is made.
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Appendix

Proof of Lemma 1: (i) The proof is by induction. VT+1(qT+1, s
T+1) is obviously convex increasing

in sT+1. Suppose that Vt+1(qt+1, s
t+1) is convex increasing in st+1. We first show that

max
1≤mt≤nt

Jt(qt,mt, s
t) = max

1≤mt≤nt

{
mt∑
i=1

st[i] + EVt+1(qt +mt,S
t+1(st, 1))

}
is convex increasing in st. Because

mt∑
i=1

st[i] = max

{
mt∑
k=1

stik : 1 ≤ i1 ≤ · · · ≤ imt ≤ nt

}
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is the maximum of a finite number of convex increasing functions of st, it is convex increasing in st. In

addition, the state transition St+1(st, 1) = St+1
B does not depend on st, so EVt+1(qt+mt,S

t+1(st, 1))

does not depend on st. Therefore, max
1≤mt≤nt

Jt(qt,mt, s
t) is the maximum of nt convex increasing

functions of st. So it is also convex increasing in st.

Next, we show that EVt+1(qt,S
t+1(st, 0)) is convex increasing in st. In this case, the state

transition is St+1(st, 0) = (St+1
A (st),St+1

B ). Because Vt+1(qt, s
t+1) is convex increasing in st+1, for

any realization st+1
B of St+1

B and I ∈ 2{1,2,...,nt}, Vt+1(qt, ((s
t
i)i∈I , s

t+1
B )) is convex increasing in st.

Then,

EVt+1(qt, (S
t+1
A (st), st+1

B ))

=
∑

I∈2{1,2,...,nt}

Vt+1(qt, ((s
t
i)i∈I , s

t+1
B ))P(St+1

A (st) = (sti)i∈I)

=
∑

I∈2{1,2,...,nt}

Vt+1(qt, ((s
t
i)i∈I , s

t+1
B ))(1− p)|I|pnt−|I|.

Because 2{1,2,...,nt} is finite, (1− p)|I|pnt−|I| ≥ 0, and Vt+1(qt, ((s
t
i)i∈I , s

t+1
B )) is convex increasing in

st for each I ∈ 2{1,2,...,nt}, EVt+1(qt, (S
t+1
A (st), st+1

B )) is convex increasing in st. Therefore,

EVt+1(qt, (S
t+1
A (st),St+1

B )) =

∫
St+1
B

EVt+1(qt, (S
t+1
A (st), st+1

B )) dFSt+1
B

(st+1
B )

is convex increasing in st because convexity and monotonicity are preserved under expectation.

Here, FSt+1
B

is the distribution function of St+1
B , and the equality follows because St+1

B and St+1
A (st)

are independent and by Fubini’s theorem.

Because Vt(qt, s
t) is the maximization over two convex increasing functions in st, it is also convex

increasing in st.

(ii) Let s̃t = st + δej . To prove ∇stj
Vt(qt, s

t) ≤ 1, it is equivalent to show that

Vt(qt, s̃
t)− Vt(qt, s

t) ≤ δ

for any δ ≥ 0. We prove this through a sample-path argument.

Suppose that the optimal policy is π∗ when the state is (qt, s̃
t), and that we implement π∗ when

the state is (qt, s
t), which may be suboptimal. The policy π∗ specifies when to stop, how many offers

to make, and whom to make offers to. Given a sample path, the difference between the total rewards

under the two states is either zero (when applicant j is not hired under π∗) or δ (when applicant j

is hired). Let V π∗
t (qt, s

t) be the total reward when the state is (qt, s
t) and π∗ is implemented. Then,

Vt(qt, s̃
t)− Vt(qt, s

t) ≤Vt(qt, s̃
t)− V π∗

t (qt, s
t)

≤δ,
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where the first inequality follows because π∗ is feasible when the state is (qt, s
t).

(iii) If applicant j departs in period t + 1, then the marginal value of j’s score in period t + 1

is obviously zero. Therefore,

∇stj
EVt+1(qt,S

t+1(st, 0))

=(1− p)∇stj
E
[
Vt+1(qt,S

t+1(st, 0))
∣∣W t

j = 0
]
+ p∇stj

E
[
Vt+1(qt,S

t+1(st, 0))
∣∣W t

j = 1
]

=(1− p)E
[
∇stj

Vt+1(qt,S
t+1(st, 0))

∣∣W t
j = 0

]
≤1− p,

where the inequality is by (ii). ■

Proof of Lemma 2: For notational brevity, let s̃ = (s1, . . . , sj−1, s̃j , sj+1, . . . , sn) and

s′ = (s1, . . . , sj−1, s
′
j , sj+1, . . . , sn).

(i) We first show that
{
sj ≥ 0 : sj ≥ s[m∗(s)]

}
is nonempty and that its minimum is at-

tainable. Here, s[m∗(s)] as a function of sj may not be monotonic and continuous. Let

sj = maxi∈{1,2,...,n}\{j} si. Because sj = s[1] ≥ s[m∗(s)], the set
{
sj ≥ 0 : sj ≥ s[m∗(s)]

}
is nonempty.

Define cj(s−j) = inf
{
sj ≥ 0 : sj ≥ s[m∗(s)]

}
and let sc = (s1, . . . , sj−1, cj(s−j), sj+1, . . . , sn). To

show that the infimum can be replaced by the minimum, it suffices to show that cj(s−j) ≥ sc[m∗(sc)].

Take any ε > 0 and let s̃j = cj(s−j)+ε. We first show that j ∈ M(s̃) by contradiction. Suppose

j /∈ M(s̃). By the definition of cj(s−j), there exists an s′j ∈
{
sj ≥ 0 : sj ≥ s[m∗(s)]

}
such that

s′j < cj(s−j)+ε = s̃j . This implies that s′[m∗(s′)] ≤ s′j < s̃j < s̃[m∗(s̃)], and therefore, m∗(s′) > m∗(s̃).

Because
m∑
i=1

s[i] + g(m)−
(

m−1∑
i=1

s[i] + g(m− 1)

)
= s[m] + g(m)− g(m− 1)

is increasing in sj ,
∑m

i=1 s[i] + g(m) is supermodular in (m, sj), which furhter implies that m∗(s)

is increasing in sj . Thus, we have m∗(s′) ≤ m∗(s̃), which is a contradiction. Therefore, j ∈ M(s̃).

Then, we have s̃j ≥ s̃[m∗(s̃)] ≥ sc[m∗(s̃)], where the second inequality holds because s̃ only differs from

sc in the jth component and s̃j > scj . Because m∗(s) is the largest maximizer in (3), it is clear that

m∗(s) is a step function of sj and is right continuous in sj . Therefore,

cj(s−j) = lim
ε→0+

(cj(s−j) + ε) = lim
ε→0+

s̃j ≥ lim
ε→0+

sc[m∗(s̃)] = sc[m∗(sc)].

Hence, cj(s−j) ≥ sc[m∗(sc)], and the minimum of
{
sj ≥ 0 : sj ≥ s[m∗(s)]

}
is attainable.

To prove the second and third statements of (i), we first prove the following claim: m∗(s̃) = m∗(s)

for any s̃j ≥ sj with j ∈ M(s) and for any s̃j ≤ sj with j /∈ M(s).
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For any m∗(s) < m′ ≤ n, by the optimality of m∗(s), we have

0 >
m′∑
i=1

s[i] + g(m′)−

m∗(s)∑
i=1

s[i] + g(m∗(s))


=

m′∑
i=m∗(s)+1

s[i] + g(m′)− g(m∗(s)). (A1)

Similarly, for any 1 ≤ m′′ < m∗(s), we have

0 ≥
m′′∑
i=1

s[i] + g(m′′)−

m∗(s)∑
i=1

s[i] + g(m∗(s))


=−

m∗(s)∑
i=m′′+1

s[i] + g(m′′)− g(m∗(s)). (A2)

We consider the following two cases. In both cases, we show that m∗(s̃) = m∗(s) by contradiction.

Case 1. Take any s̃j > sj with j ∈ M(s). Then, m∗(s̃) ≥ m∗(s). Suppose m∗(s̃) > m∗(s).

Then,

f(s̃) =

m∗(s̃)∑
i=1

s̃[i] + g(m∗(s̃))

=

m∗(s)∑
i=1

s̃[i] +

m∗(s̃)∑
i=m∗(s)+1

s̃[i] + g(m∗(s̃))

=

m∗(s)∑
i=1

s̃[i] +

m∗(s̃)∑
i=m∗(s)+1

s[i] + g(m∗(s̃))

=

m∗(s)∑
i=1

s̃[i] + g(m∗(s)) +

m∗(s̃)∑
i=m∗(s)+1

s[i] + g(m∗(s̃))− g(m∗(s))

<

m∗(s)∑
i=1

s̃[i] + g(m∗(s)),

which contradicts the optimality of m∗(s̃). Here, the third equality holds because s̃[i] = s[i] for all

i ≥ m∗(s) + 1, and the inequality is by Equation (A1). Hence, we have m∗(s̃) = m∗(s).

In this case, f(s) can be written as

f(s) = sj +

m∗(s)∑
i=1

s[i] − sj

+ g(m∗(s)), (A3)

where
∑m∗(s)

i=1 s[i] − sj represents the total score of the highest m∗(s) scores in s except for sj .

Because sj ≥ s[m∗(s)], s̃j ≥ s̃[m∗(s)], and m∗(s̃) = m∗(s), we have
∑m∗(s̃)

i=1 s̃[i] − s̃j =
∑m∗(s)

i=1 s[i] − sj ,
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and therefore,

f(s̃) =

m∗(s̃)∑
i=1

s̃[i] + g(m∗(s̃))

=s̃j +

m∗(s)∑
i=1

s[i] − sj

+ g(m∗(s))

=s̃j − sj + f(s), (A4)

where the last equality holds by Equation (A3).

Case 2. Take any s̃j < sj with j /∈ M(s). Then, m∗(s̃) ≤ m∗(s). Suppose m∗(s̃) < m∗(s).

Then,

f(s̃) =

m∗(s̃)∑
i=1

s̃[i] + g(m∗(s̃))

=

m∗(s̃)∑
i=1

s[i] + g(m∗(s̃))

=

m∗(s)∑
i=1

s[i] −
m∗(s)∑

i=m∗(s̃)+1

s[i] + g(m∗(s̃))

=

m∗(s)∑
i=1

s[i] + g(m∗(s))−
m∗(s)∑

i=m∗(s̃)+1

s[i] + g(m∗(s̃))− g(m∗(s))

≤
m∗(s)∑
i=1

s[i] + g(m∗(s))

=

m∗(s)∑
i=1

s̃[i] + g(m∗(s)),

which contradicts the optimality of m∗(s̃). Here, the second equality holds because s̃[i] = s[i] for all

i ≤ m∗(s), and the inequality is by Equation (A2). Hence, we have m∗(s̃) = m∗(s).

In this case, we have

f(s̃) =

m∗(s̃)∑
i=1

s̃[i] + g(m∗(s̃))

=

m∗(s)∑
i=1

s[i] + g(m∗(s))

= f(s). (A5)

Then, the claim follows by Cases 1 and 2.

Now, let sj = cj(s−j). We prove the second statement of (i). By the definition of cj(s−j), we

have sj ≥ s[m∗(s)], i.e., j ∈ M(s). Then, by the claim, m∗(s̃) = m∗(s) for any s̃j ≥ sj . In this case,
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we let m = m∗(s). Similarly, we have s̃j < s̃[m∗(s̃)] for any s̃j < sj , i.e., j /∈ M(s̃). Then, by the

claim, m∗(s′) = m∗(s̃) for any s′j ≤ s̃j . Because s̃j is arbitrary, m∗(s̃) is constant for all s̃j < sj ,

and we denote the constant by m. Finally, because m∗(s) is increasing in s, we have m ≤ m.

For the third statement of (i), the necessity part holds by the definition of cj(s−j). For the

sufficiency part, because m∗(s̃) = m∗(s) for any s̃j ≥ sj when sj = cj(s−j), it follows that j ∈ M(s̃).

(ii) Let sj = cj(s−j). Then, j ∈ M(s) by (i). Hence, f(s̃) = s̃j − sj + f(s) for all s̃j ≥ sj by

Equation (A4). Take any s′j < sj . Then, j /∈ M(s′) by (i). Hence, f(s̃) = f(s′) for all s̃j ≤ s′j

by Equation (A5). Note that f(·) is continuous by its convexity. Then, letting s′j → sj−, we have

f(s̃) = f(s) for all s̃j < sj . Therefore, we have

f(s̃) = (s̃j − sj)
+ + f(s).

Applying the above equation for s̃j = 0, we have f(s1, . . . , sj−1, 0, sj+1, . . . , sn) = (0−sj)
++f(s) =

f(s). ■

Proof of Theorem 1: (i) To simplify notation, we suppress qt and st−j and define

f(stj) = max
1≤mt≤nt

{
mt∑
i=1

st[i] + EVt+1(qt +mt,S
t+1(st, 1))

}
, (A6)

and

g(stj) = EVt+1(qt,S
t+1(st, 0)). (A7)

Note that f(stj) and g(stj) are continuously increasing in stj . By Lemma 2(i), we can define the value

ctj = min
{
stj ≥ 0 : stj ≥ st[m∗

t (qt,s
t)]

}
. By Lemma 2(ii), f(stj) can be written as

f(stj) = (stj − ctj)
+ + f(0).

Therefore, ∇stj
f(stj) = 0 on [0, ctj) and ∇stj

f(stj) = 1 on [ctj ,∞). In addition, we have ∇stj
g(stj) ≤

1 − p ≤ 1 on [0,∞) by Lemma 1(iii). Because when p = 0, it is optimal for the recruiter to wait

until the end, we let Lt
j(qt, s

t
−j) = −∞ and U t

j (qt, s
t
−j) = ∞ for all t < T , and focus on the cases

when p ∈ (0, 1] or when p = 0 and t = T . We consider the following two cases.

Case 1. If g(ctj) ≤ f(ctj), then g(stj) ≤ f(stj) for all s
t
j ≥ 0. Let

Lt
j(qt, s

t
−j) = U t

j (qt, s
t
−j) = ctj . (A8)

Then, we have a∗t (qt, s
t) = 1 for all stj ≥ 0.

Case 2. If g(ctj) > f(ctj), then there exists a s̃tj > ctj such that g(s̃tj) = f(s̃tj), g(s
t
j) > f(stj) for

all stj ∈ (ctj , s̃
t
j) and g(stj) < f(stj) for all s

t
j ∈ (s̃tj ,∞). Let

U t
j (qt, s

t
−j) = s̃tj , (A9)
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and

Lt
j(qt, s

t
−j) =


inf
{
stj ∈ [0, ctj ] : g(s

t
i) > f(sti)

}
if g(0) ≤ f(0),

−∞ if g(0) > f(0).

(A10)

Then, we have g(stj) > f(stj) (a∗t (qt, s
t) = 0) if Lt

j(qt, s
t
−j) < stj < U t

j (qt, s
t
−j) and g(sti) ≤ f(sti)

(a∗t (qt, s
t) = 1) if stj ≤ Lt

j(qt, s
t
−j) or s

t
j ≥ U t

j (qt, s
t
−j).

(ii) By (i), when stj ≤ Lt
j(qt, s

t
−j) or s

t
j ≥ U t

j (qt, s
t
−j), we have

Vt(qt, s
t) = max

1≤mt≤nt

{
mt∑
i=1

st[i] + EVt+1(qt +mt,S
t+1(st, 1))

}
.

From Case 1 and Case 2 above, we have Lt
j(qt, s

t
−j) ≤ ctj ≤ U t

j (qt, s
t
−j). Then, applying Lemma 2(i),

we obtain the result.

(iii) We first prove the necessity part by contradiction. Suppose applicant j is hired but stj <

U t
j (qt, s

t
−j). If Lt

j(qt, s
t
−j) < stj < U t

j (qt, s
t
−j), then j cannot be hired because a∗t (qt, s

t) = 0. If stj ≤
Lt
j(qt, s

t
−j), then stj < ctj because stj < U t

j (qt, s
t
−j). By the definition of ctj , we have stj < st[m∗

t (qt,s
t)],

so j is not hired. Hence, we must have stj ≥ U t
j (qt, s

t
−j).

For the sufficiency part, if stj ≥ U t
j (qt, s

t
−j) ≥ ctj , then stj ≥ st[m∗(st)] by Lemma 2(i). If stj >

st[m∗
t (qt,s

t)], then applicant j is hired; if stj = st[m∗(st)], hiring applicant j is always optimal. ■

Proof of Lemma 3: (i) Note that s = ŝ when sj = 0 and s = š when sj = ci(ŝ−i). In this proof,

we use these two points and Lemma 2(ii) to determine f(s) as a function of sj and si.

By Lemma 2(ii), we have

f(š) = (si − ci(š−i))
+ + f(s′), (A11)

where s′ = (s1, . . . , sj−1, ci(ŝ−i), sj+1, . . . , si−1, 0, si+1, . . . , sn). Let

s′′ = (s1, . . . , sj−1, sj , sj+1, . . . , si−1, 0, si+1, . . . , sn).

Then, cj(s
′′
−j) = ci(ŝ−i) because interchanging values in the ith and jth coordinates does not change

f . Then, by Lemma 2(ii),

f(ŝ) =(si − ci(ŝ−i))
+ + f(s1, . . . , sj−1, 0, sj+1, . . . , si−1, 0, si+1, . . . , sn)

=(si − ci(ŝ−i))
+ +

[
(ci(ŝ−i)− cj(s

′′
−j))

+ + f(s1, . . . , sj−1, 0, sj+1, . . . , si−1, 0, si+1, . . . , sn)
]

=(si − ci(ŝ−i))
+ + f(s1, . . . , sj−1, ci(ŝ−i), sj+1, . . . , si−1, 0, si+1, . . . , sn)

=(si − ci(ŝ−i))
+ + f(s′), (A12)

where the third equality follows by applying Lemma 2(ii) to f(s′′) with respect to sj and letting

sj = ci(ŝ−i).
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Next, we show that ci(ŝ−i) ≥ ci(š−i) by contradiction. Suppose ci(ŝ−i) < ci(š−i). Take any

si ∈ (ci(ŝ−i), ci(š−i)). Then, by Equations (A11) and (A12), f(š) = f(s′) and f(ŝ) = si − ci(ŝ−i) +

f(s′) > f(š), which is a contradiction because f(·) is increasing. Hence, we have ci(ŝ−i) ≥ ci(š−i).

We now consider the following three cases, depending on the value of si.

Case 1. ci(ŝ−i) > ci(š−i). In this case, we consider the following two subcases.

Figure A1: (Color online) Graphical Illustrations for Case 1

(a) Subcase 1

0 ci(ŝ−i) cj(s−j)

sj

f
(s

′ )

(0, f (ŝ)) (ci(ŝ−i), f (š))

f (s′′)

f (s)

(b) Subcase 2

0 cj(s−j) ci(ŝ−i)

sj

f
(ŝ
)

f
(š
)

(0, f (ŝ))

(ci(ŝ−i), f (š))

f (s)

Subcase 1. si ≤ ci(š−i). In this subcase, we show cj(s−j) = ci(ŝ−i) by contradiction. By

Equations (A11) and (A12), f(ŝ) = f(š) = f(s′). This implies that f(s) = f(s′) for all sj ≤ ci(ŝ−i),

and therefore, cj(s−j) ≥ ci(ŝ−i). Because f(s) ≥ f(s′′) by monotonicity, we must have cj(s−j) ≤
cj(s

′′
−j) = ci(ŝ−i). Otherwise, f(s) < f(s′′) for any sj > ci(ŝ−i), which is a contradiction (see

Figure A1(a)). Therefore, we have cj(s−j) = ci(ŝ−i). Then, by Lemma 2(ii), for all sj ≥ 0 and

si ≤ ci(š−i),

f(s) =(sj − cj(s−j))
+ + f(ŝ)

=(sj − ci(ŝ−i))
+ + f(ŝ).

Subcase 2. si > ci(š−i). By Equations (A11) and (A12), f(ŝ) = (si − ci(ŝ−i))
+ + f(s′) <

si− ci(š−i)+ f(s′) = f(š). Then, using the points (0, f(ŝ)) and (ci(ŝ−i), f(š)) and applying Lemma
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2(ii), we have (see Figure A1(b))

cj(s−j) =ci(ŝ−i)− (f(š)− f(ŝ))

=ci(ŝ−i)− (si − ci(š−i)) + (si − ci(ŝ−i))
+

=ci(ŝ−i)−min {ci(ŝ−i), si}+ ci(š−i).

Applying Lemma 2(ii) again, for all sj ≥ 0 and si > ci(š−i),

f(s) = (sj − cj(s−j))
+ + f(ŝ)

= (sj − (ci(ŝ−i)−min {ci(ŝ−i), si}+ ci(š−i)))
+ + f(ŝ).

By Subcases 1 and 2, for all sj ≥ 0 and si ≥ 0,

f(s) = (sj − (ci(ŝ−i)−min {ci(ŝ−i), si}+min {ci(š−i), si}))+ + f(ŝ). (A13)

For Cases 2 and 3, let s̄ = (s1, . . . , sj−1, ci(ŝ−i), sj+1, . . . , si−1, ci(š−i), si+1, . . . , sn) and define

b = s̄[m∗(s̄)−1] if m
∗(s̄) > 1 or b = ∞ otherwise.

Case 2. ci(ŝ−i) = ci(š−i) < b. In this case, we have f(s) = (sj − ci(ŝ−i))
+ + f(ŝ) for all

sj ≥ 0 and si ≤ ci(š−i) = ci(ŝ−i) by applying the same argument in Subcase 1 of Case 1. If

si > ci(š−i) = ci(ŝ−i), we show that s̄[m∗(s̄)] = ci(ŝ−i).

By Lemma 2(i), ši = ci(š−i) implies that ši ≥ š[m∗(š)]. Then, by ci(š−i) = ci(ŝ−i) and the

construction of s̄ and š, we have s̄j ≥ s̄[m∗(s̄)] as well. This implies that s̄j = s̄[m∗(s̄)] because

s̄j = ci(ŝ−i) < b. Therefore, s̄[m∗(s̄)] = ci(ŝ−i).

Then, for any si > ci(š−i) = ci(ŝ−i), we have

0 > max
1≤k≤n−m∗(s̄)


m∗(s̄)+k∑
l ̸=m∗(s̄)

s̄[l] + si + g(m∗(s̄) + k)

−

m∗(s̄)−1∑
i=1

s̄[i] + si + g(m∗(s̄))



= max
1≤k≤n−m∗(s̄)


m∗(s̄)+k∑
l ̸=m∗(s̄),

l ̸=m∗(s̄)+1

s̄[l] + si + ci(ŝ−i) + g(m∗(s̄) + k)

−

m∗(s̄)−1∑
i=1

s̄[i] + si + g(m∗(s̄))


=ci(ŝ−i)− b′,

where b′ = g(m∗(s̄)) − max
1≤k≤n−m∗(s̄)

{∑m∗(s̄)+k
l=m∗(s̄)+2 s̄[l] + g(m∗(s̄) + k)

}
, and j ∈ M(s) if and only if

either one of the following holds: (1) sj < min {b, si} and both i and j are on the offer list, i.e.,

0 ≤ max
1≤k≤n−m∗(s̄)


m∗(s̄)+k∑
l ̸=m∗(s̄),

l ̸=m∗(s̄)+1

s̄[l] + si + sj + g(m∗(s̄) + k)

−

m∗(s̄)−1∑
l=1

s̄[l] + si + g(m∗(s̄))


=sj − b′;
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or (2) sj ≥ min {b, si}.
Let b̂ = min {b, b′}. Clearly, ci(ŝ−i) < b̂ ≤ b. Then, we equivalently have j ∈ M(s) if and only

if sj ≥ min
{
b̂, si

}
, i.e., cj(s−j) = min

{
b̂, si

}
. By Lemma 2(ii), for all sj ≥ 0 and si > ci(š−i) =

ci(ŝ−i),

f(s) = (sj − cj(s−j))
+ + f(ŝ)

=
(
sj −min

{
b̂, si

})+
+ f(ŝ).

Therefore, for all sj ≥ 0 and si ≥ 0,

f(s) =
(
sj −max

{
min

{
b̂, si

}
, ci(ŝ−i)

})+
+ f(ŝ). (A14)

Case 3. ci(ŝ−i) = ci(š−i) ≥ b = s̄[m∗(s̄)−1]. In this case, we have f(s) = (sj − ci(ŝ−i))
+ + f(ŝ)

for all sj ≥ 0 and si ≤ ci(š−i) = ci(ŝ−i) by applying the same argument in Subcase 1 of Case 1. If

si > ci(š−i) = ci(ŝ−i), we show that cj(s−j) = ci(ŝ−i).

We first show that cj(s−j) ≤ ci(ŝ−i). Note that s̄[m∗(s̄)−1] ≤ ci(ŝ−i) = s̄j . Then, by the

construction of s̄ and š, š[m∗(š)−1] ≤ ci(ŝ−i) = šj when ši = ci(š−i). Because šj is not in the last

order of the highest m∗(š) scores when ši = ci(š−i) and m∗(š) is unchanged for all ši ≥ ci(š−i) by

Lemma 2(i), we must have j ∈ M(š) for all ši > ci(š−i). Therefore, applying Lemma 2(i) again,

cj(s−j) ≤ šj = ci(ŝ−i) for any si = ši > ci(š−i) = ci(ŝ−i).

Next, we prove that cj(s−j) ≥ ci(ŝ−i). By Equations (A11) and (A12), f(ŝ) = f(š) = si −
ci(ŝ−i) + f(s′). This implies that f(s) = si − ci(ŝ−i) + f(s′) for all sj ≤ ci(ŝ−i), and therefore,

cj(s−j) ≥ ci(ŝ−i) by Lemma 2(ii).

Hence, we have cj(s−j) = ci(ŝ−i). Applying Lemma 2(ii) again, for all sj ≥ 0 and si > ci(š−i) =

ci(ŝ−i),

f(s) = (sj − cj(s−j))
+ + f(ŝ)

= (sj − ci(ŝ−i))
+ + f(ŝ).

Therefore, we have f(s) = (sj − ci(ŝ−i))
+ + f(ŝ) for all sj ≥ 0 and si ≥ 0, which also satisfies

Equation (A14) by letting b̂ = ci(ŝ−i).

Combining Cases 1, 2, and 3, for any sj ≥ 0 and si ≥ 0, we have

f(s) =


(
sj −max

{
min

{
b̂, si

}
, ci(ŝ−i)

})+
+ f(ŝ) if ci(ŝ−i) = ci(š−i),

(sj − (ci(ŝ−i)−min {ci(ŝ−i), si}+min {ci(š−i), si}))+ + f(ŝ) if ci(ŝ−i) > ci(š−i).

(ii) We consider the following two cases.
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Case 1. If ci(ŝ−i) = ci(š−i), then cj(s−j) = max
{
min

{
b̂, si

}
, ci(ŝ−i)

}
, and by symmetry,

ci(s−i) = max
{
min

{
b̂, sj

}
, ci(ŝ−i)

}
. If si ≤ ci(ŝ−i), then sj ≤ si ≤ ci(ŝ−i) ≤ b̂. This implies

that ci(s−i) = cj(s−j) = ci(ŝ−i). Therefore, si − ci(s−i) = si − ci(ŝ−i) ≥ sj − cj(s−j), which

further implies that f(s + δei) − f(s) ≥ f(s + δej) − f(s). If si > ci(ŝ−i), then si − ci(s−i) =

si −max
{
min

{
b̂, sj

}
, ci(ŝ−i)

}
≥ 0. This implies that f(s + δei) − f(s) = δ ≥ f(s + δej) − f(s).

Hence, f(s+ δei) ≥ f(s+ δej).

Case 2. If ci(ŝ−i) > ci(š−i), then cj(s−j) = ci(ŝ−i) − min {ci(ŝ−i), si} + min {ci(š−i), si},
and by symmetry, ci(s−i) = ci(ŝ−i) − min {ci(ŝ−i), sj} + min {ci(š−i), sj}. If si ≤ ci(ŝ−i), then

si−ci(s−i) = si−ci(ŝ−i)+sj−min {ci(š−i), sj} ≥ sj−ci(ŝ−i)+si−min {ci(š−i), si} = sj−cj(s−j).

This implies that f(s + δei) − f(s) ≥ f(s + δej) − f(s). If si > ci(ŝ−i), then si − ci(s−i) =

si − ci(ŝ−i) + min {ci(ŝ−i), sj} −min {ci(š−i), sj} > min {ci(ŝ−i), sj} −min {ci(š−i), sj} ≥ 0. This

implies that f(s+ δei)− f(s) = δ ≥ f(s+ δej)− f(s). Hence, f(s+ δei) ≥ f(s+ δej). ■

Proof of Theorem 2: For notational convenience, we suppress qt, (s
t
k)k∈{1,2,...,nt}\{i,j} and the time

index for all notations. Let ck(s−k) = ctk(qt, s
t
−k), Lj(s−k) = Lt

j(qt, s
t
−j), and Uj(s−k) = U t

j (qt, s
t
−j)

for k = 1, 2, . . . , nt. Define f(sj , si) and g(sj , si) similarly as in Equations (A6) and (A7), respec-

tively. For sufficiently small δ > 0, define ∆sif(sj , si) = f(sj , si + δ) − f(sj , si) and ∆sig(sj , si) =

g(sj , si + δ)− g(sj , si). Then, ∆sif(sj , si) ∈ {0, δ} by Lemma 2(ii) and 0 ≤ ∆sig(sj , si) ≤ (1− p)δ

by Lemma 1(i) and (iii). Denote s̃ = (s1, . . . , si−1, si + δ, si+1, . . . , snt). Recall that there are two

cases when we define (Lj(s−j), Uj(s−j)) in the proof of Theorem 1:

(a) If g(cj(s−j), si) ≤ f(cj(s−j), si), then Lj(s−j) = Uj(s−j) = cj(s−j) (see Equation (A8)).

(b) If g(cj(s−j), si) > f(cj(s−j), si), then Uj(s−j) = s̄j with s̄j > cj(s−j) satisfying g(s̄j , si) =

f(s̄j , si), g(sj , si) > f(sj , si) for all sj ∈ (cj(s−j), s̄j) and g(sj , si) < f(sj , si) for all sj ∈ (s̄j ,∞);

and Lj(s−j) = inf {sj ∈ [0, cj(s−j)] : g(sj , si) > f(sj , si)} if g(0, si) ≤ f(0, si) and Lj(s−j) = −∞ if

g(0, si) > f(0, si) (see Equations (A9) and (A10)).

Step 1. We first show that

lim
si→∞

Lj(s−j) = lim
si→∞

Uj(s−j) = β.

For any given sj and sufficiently large si, because ∆sif(sj , si) = δ > (1−p)δ ≥ ∆sig(sj , si), we have

f(sj , si) > g(sj , si). This implies that Lj(s−j) = Uj(s−j) = cj(s−j) when si is sufficiently large.

Because limsi→∞ cj(s−j) = β by Lemma 3(i), the result follows.

Step 2. We prove (i) and (ii) together via the following two cases. First note that because

cj(s−j) is continuous in si by Lemma 3(i) and both f(sj , si) and g(sj , si) are continuous in (sj , si),
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it is obvious that Lj(s−j) and Uj(s−j) are also continuous in si according to their definitions in (a)

and (b).

Case 1. If ci(ŝ−i) > ci(š−i), by Lemma 3(i), we have

f(sj , si) = (sj − (ci(ŝ−i)−min {ci(ŝ−i), si}+min {ci(š−i), si}))+ + (si − ci(ŝ−i))
+ + h,

where h is some function independent of sj and si. By Lemma 3(i), ci(ŝ−i) ≥ ci(š−i). We then

consider the following three subcases.

Subcase 1. If si < ci(š−i), then for any sj ≥ 0,

f(sj , si) = (sj − ci(ŝ−i))
+ + h.

We have δ > ∆sig(sj , si) ≥ 0 = ∆sif(sj , si) for all sj ≥ 0. In addition, cj(s−j) = cj(s̃−j) = ci(ŝ−i).

We consider the above two cases (a) and (b) in defining (Lj(s−j), Uj(s−j)) (see Figure A2(a)):

(1) If g(cj(s−j), si) < f(cj(s−j), si), then g(cj(s̃−j), si+δ) < f(cj(s̃−j), si+δ), as δ is sufficiently

small. Thus, Lj(s−j) = Uj(s−j) = ci(ŝ−i) = Lj(s̃−j) = Uj(s̃−j).

(2) If g(cj(s−j), si) > f(cj(s−j), si), because ∆sig(sj , si) ≥ ∆sif(sj , si) = 0, g(s̄j , si + δ) ≥
g(s̄j , si) = f(s̄j , si) = f(s̄j , si + δ). This implies that Uj(s−j) = s̄j ≤ Uj(s̃−j). Note that

{sj ∈ [0, cj(s−j)] : g(sj , si) > f(sj , si)} ⊂ {sj ∈ [0, cj(s̃−j)] : g(sj , si + δ) > f(sj , si + δ)} .

This implies that Lj(s−j) ≥ Lj(s̃−j).

By (1), (2), and the continuity of Lj(s−j) and Uj(s−j) in si, Lj(s−j) is decreasing and Uj(s−j)

is increasing on [0, ci(š−i)).

Subcase 2. If ci(š−i) ≤ si < ci(ŝ−i), then for any sj ≥ 0,

f(sj , si) = (sj − (ci(ŝ−i)− si + ci(š−i)))
+ + h.

We have 0 ≤ ∆sig(sj , si) < δ = ∆sif(sj , si) for all sj ≥ cj(s−j) and δ > ∆sig(sj , si) ≥ 0 =

∆sif(sj , si) for all sj ≤ cj(s̃−j). In addition, cj(s−j) ≥ cj(s̃−j). We also consider the above two

cases (a) and (b) (see Figure A2(b)):

(1) If g(cj(s−j), si) < f(cj(s−j), si), then clearly, Uj(s−j) = Lj(s−j) = cj(s−j) ≥ cj(s̃−j) =

Uj(s̃−j) = Lj(s̃−j).

(2) If g(cj(s−j), si) > f(cj(s−j), si), because ∆sig(sj , si) < ∆sif(sj , si) for all sj ≥ cj(s−j),

g(s̄j , si + δ) < f(s̄j , si + δ). This implies that Uj(s−j) = s̄j > Uj(s̃−j). If Lj(s−j) ≥ cj(s̃−j),

then Lj(s−j) ≥ cj(s̃−j) ≥ Lj(s̃−j). If Lj(s−j) ≤ cj(s̃−j), because ∆sig(sj , si) ≥ ∆sif(sj , si) for all

sj ≤ cj(s̃−j), we have

{sj ∈ [0, cj(s̃−j)] : g(sj , si) > f(sj , si)} ⊂ {sj ∈ [0, cj(s̃−j)] : g(sj , si + δ) > f(sj , si + δ)} .
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Figure A2: (Color online) Graphical Illustrations for Cases 1 and 2

(a) Subcase 1, Case 1

0 ci(ŝ−i)

sj
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s j
, s i
) =
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s j
, s i

+
δ)

g(sj, si)

g(sj, si
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g(sj
, si)

g(sj
, si+

δ)

(b) Subcase 2, Case 1

0 cj(s̃−j) cj(s−j)

sj

f (
s j
, s i
)

f (
s j
, s i

+
δ)

g(sj, si)
g(sj, si

+ δ)

g(sj
, si)

g(sj
, si+

δ)

(c) Subcase 3, Case 1

0 ci(š−i)

sj

f (sj, si)

f (sj, si + δ)

g(sj, si)

g(sj, si
+ δ)

g(sj
, si)

g(sj
, si+

δ)

(d) Case 2

0 si si + δ
sj

f (sj, si)

f (sj, si + δ)

g(sj, si)

g(sj, si
+ δ)

g(sj
, si)

g(sj
, si+

δ)
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This implies that Lj(s−j) ≥ Lj(s̃−j).

By (1), (2), and the continuity of Lj(s−j) and Uj(s−j) in si, Lj(s−j) and Uj(s−j) are decreasing

on [ci(š−i), ci(ŝ−i)).

Subcase 3. If si ≥ ci(ŝ−i), then for any sj ≥ 0,

f(sj , si) = (sj − ci(š−i))
+ + si − ci(ŝ−i) + h.

We have 0 ≤ ∆sig(sj , si) < δ = ∆sif(sj , si) for all sj ≥ 0. In addition, cj(s−j) = cj(s̃−j) = ci(š−i).

We consider the above two cases (a) and (b) again (see Figure A2(c)):

(1) If g(cj(s−j), si) < f(cj(s−j), si), then clearly, Lj(s−j) = Uj(s−j) = ci(š−i) = Lj(s̃−j) =

Uj(s̃−j).

(2) If g(cj(s−j), si) > f(cj(s−j), si), because ∆sig(sj , si) < ∆sif(sj , si) for all sj ≥ 0, g(s̄j , si +

δ) < f(s̄j , si + δ). This implies that Uj(s−j) = s̄j > Uj(s̃−j). Note that

{sj ∈ [0, cj(s̃−j)] : g(sj , si + δ) > f(sj , si + δ)} ⊂ {sj ∈ [0, cj(s−j)] : g(sj , si) > f(sj , si)} .

This implies that Lj(s−j) ≤ Lj(s̃−j).

By (1), (2), and the continuity of Lj(s−j) and Uj(s−j) in si, Lj(s−j) is increasing and Uj(s−j)

is decreasing on [ci(ŝ−i),∞).

Combining Subcases 1, 2, and 3, Lj(s−j) is decreasing for si ≤ ci(ŝ−i) and increasing for

si ≥ ci(ŝ−i); Uj(s−j) is increasing for si ≤ ci(š−i) and decreasing for si ≥ ci(š−i).

Case 2. If ci(ŝ−i) = ci(š−i), by Lemma 3(i), we have

f(sj , si) =
(
sj −max

{
min

{
b̂, si

}
, ci(ŝ−i)

})+
+ (si − ci(ŝ−i))

+ + h.

Recall that ci(ŝ−i) = ci(š−i) ≤ b̂. If si < ci(š−i) = ci(ŝ−i), f(sj , si) = (sj − ci(ŝ−i))
+ + h for all

sj ≥ 0. Applying the same argument as in Subcase 1 of Case 1, Lj(s−j) is decreasing and Uj(s−j)

is increasing on [0, ci(š−i)). Similarly, if si > b̂, f(sj , si) =
(
sj − b̂

)+
+ si − ci(ŝ−i) + h. Applying

the same argument as in Subcase 3 of Case 1 by replacing ci(š−i) with b̂, Lj(s−j) is increasing and

Uj(s−j) is decreasing on [b̂,∞).

If ci(š−i) = ci(ŝ−i) ≤ si ≤ b̂, then

f(sj , si) = (sj − si)
+ + si − ci(ŝ−i) + h.

We have 0 ≤ ∆sig(sj , si) < δ = ∆sif(sj , si) for all sj ≤ cj(s−j) = si and δ > ∆sig(sj , si) ≥ 0 =

∆sif(sj , si) for all sj ≥ cj(s̃−j) = si+ δ. In addition, cj(s−j) ≤ cj(s̃−j). We consider the above two

cases (a) and (b) in defining (Lj(s−j), Uj(s−j)) (see Figure A2(d)):
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(1) If g(cj(s−j), si) < f(cj(s−j), si), then clearly, Uj(s−j) = Lj(s−j) = cj(s−j) ≤ cj(s̃−j) =

Uj(s̃−j) = Lj(s̃−j).

(2) If g(cj(s−j), si) > f(cj(s−j), si), because ∆sig(sj , si) ≥ ∆sif(sj , si) = 0 for all sj ≥ cj(s̃−j),

g(s̄j , si+δ) ≥ f(s̄j , si+δ). This implies that Uj(s−j) = s̄j ≤ Uj(s̃−j) if s̄j ≥ cj(s̃−j). If s̄j < cj(s̃−j),

then Uj(s−j) = s̄j ≤ cj(s̃−j) ≤ Uj(s̃−j). Because ∆sig(sj , si) < ∆sif(sj , si) for all sj ≤ cj(s−j),

g(Lj(s−j), si + δ) < f(Lj(s−j), si + δ). This implies that Lj(s−j) < Lj(s̃−j).

By (1), (2), and the continuity of Lj(s−j) and Uj(s−j) in si, Lj(s−j) and Uj(s−j) are increasing

on [ci(ŝ−i), b̂).

Hence, Lj(s−j) is decreasing for si ≤ ci(ŝ−i) and increasing for si ≥ ci(ŝ−i); Uj(s−j) is increasing

for si ≤ b̂ and decreasing for si ≥ b̂.

Then, (i) and (ii) follow by Cases 1 and 2. ■

For the proof of Theorem 3, we need the following auxiliary lemma related to the optimization

problem (3). It shows that if changing a subset of scores does not affect their inclusion on the offer

list, then it also does not affect the inclusion of other scores. Let δi(s) denote whether si is on the

offer list. It is equal to one if si is on the offer list and zero otherwise. For any I ⊂ {1, 2, . . . , n},
let s̃ be defined similarly to s, except that (si)i∈I is replaced with another vector (s̃i)i∈I .

Lemma A1. If δi(s̃) = δi(s) for all i ∈ I, then δj(s̃) = δj(s) for all j /∈ I.

Proof of Lemma A1: The proof is by contradiction. Suppose that there exists some j /∈ I such

that |δj(s) − δj(s̃)| = 1. Let J denote the set of all these j’s. We first compare the optimal value

f(s̃) with the value when keeping δj(s̃) = δj(s) for all j ∈ J :

f(s̃)−
∑
i∈I

s̃iδi(s̃)−
∑
j∈J

sjδj(s)−
∑

k∈{1,2,...,n}\(I
⋃

J )

skδk(s)− g

∑
j∈J

δj(s) +
∑

k∈{1,2,...,n}\J

δk(s)


=
∑
j∈J

sj(δj(s̃)− δj(s)) + g

m∗(s) +
∑
j∈J

(δj(s̃)− δj(s))

− g(m∗(s))

≥0, (A15)

where, by the optimality, the inequality is strict if and only if
∑

j∈J (δj(s̃)− δj(s)) < 0. When the
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state is s, we also have

f(s)−
∑
j∈J

sjδj(s̃)−
∑

k∈{1,2,...,n}\J

skδk(s)− g

∑
j∈J

δj(s̃) +
∑

k∈{1,2,...,n}\J

δk(s)


=
∑
j∈J

sj(δj(s)− δj(s̃)) + g(m∗(s))− g

m∗(s) +
∑
j∈J

(δj(s̃)− δj(s))


≥0, (A16)

where the inequality is strict if and only if
∑

j∈J (δj(s̃)− δj(s)) > 0.

If
∑

j∈J (δj(s̃) − δj(s)) ̸= 0, it is clear that (A15) and (A16) contradict with each other. If∑
j∈J (δj(s̃) − δj(s)) = 0, because |δj(s) − δj(s̃)| = 1, |J | is even and |J |/2 of j’s in J satisfy

δj(s) = 0 and δj(s̃) = 1, while the other half i’s satisfy δi(s) = 1 and δi(s̃) = 0. Denote the former

set as J1 and the latter as J2. Because sj is on the offer list for all j ∈ J1 when the state is s, while

si is not for all i ∈ J2, we must have min {sj : j ∈ J1} ≥ max {si : i ∈ J2}. In addition, by (A15)

and (A16),
∑

j∈J sj(δj(s̃)− δj(s)) = 0 =
∑

j∈J sj(δj(s)− δj(s̃)) =
∑

j∈J1
sj −

∑
i∈J2

si. Therefore,

we conclude that sj = si for any i, j ∈ J , and the optimal policies do not change. ■

Proof of Theorem 3: The proof is by induction. When n = 1, by Theorem 1, we let Pt
∅ =

[0, Lt
1(qt, s

t
−1)], Pt

{1} = [U t
1(qt, s

t
−1),∞) and Ct = (Lt

1(qt, s
t
−1), U

t
1(qt, s

t
−1)), and the result holds.

Suppose that the result holds for n = k − 1. For n = k, let qt and (sti)i∈{k+1,k+2,...,nt} be given.

For any stk ∈ [0,∞), there exists a unique collection of sets
{
Qt

I(s
t
k)
}
I⊂{1,2,...,k−1} in Rk−1

+ that

satisfies all the statements in Theorem 3. Let Dt(stk) = Rk−1
+ \ ⋃I⊂{1,2,...,k−1}Qt

I(s
t
k). For any

I ⊂ {1, 2, . . . , k − 1}, we define the following sets:

At
I(s

t
k) =

{
(sti)i∈{1,2,...,k} : δ

t
k = 0, (sti)i∈{1,2,...,k−1} ∈ Qt

I(s
t
k)
}
,

Bt
I(s

t
k) =

{
(sti)i∈{1,2,...,k} : δ

t
k = 1, (sti)i∈{1,2,...,k−1} ∈ Qt

I(s
t
k)
}
,

Ct(stk) =
{
(sti)i∈{1,2,...,k} : (s

t
i)i∈{1,2,...,k−1} ∈ Dt(stk)

}
.

For any I ⊂ {1, 2, . . . , k}, we further define the following sets:

Pt
I =


⋃

stk∈[0,∞)At
I(s

t
k) if k /∈ I,⋃

stk∈[0,∞) Bt
I\{k}(s

t
k) otherwise,

and

Ct =
⋃

stk∈[0,∞)

Ct(stk).

We verify the statements in Theorem 3 one-by-one.
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(1) For any nonempty Pt
I and Pt

J with distinct I,J ⊂ {1, 2, . . . , k}, take any point

(sti)i∈{1,2,...,k} ∈ Pt
I . By the definitions of At

·(s
t
k) and Bt

· (s
t
k), δ

t
i = 1 for all i ∈ I and δtj = 0 for all

j ∈ {1, 2, . . . , k} \ I. This implies that (sti)i∈{1,2,...,k} /∈ Pt
J . Therefore, Pt

I
⋂Pt

J = ∅.
(2) If (sti)i∈{1,2,...,k} /∈ ⋃

I⊂{1,2,...,k} Pt
I , then (sti)i∈{1,2,...,k} /∈ ⋃

I⊂{1,2,...,k−1}
(
At

I(s
t
k)
⋃Bt

I(s
t
k)
)

and so (sti)i∈{1,2,...,k−1} /∈ ⋃I⊂{1,2,...,k−1}Q
t
I(s

t
k). This implies that (sti)i∈{1,2,...,k−1} ∈ Dt(stk) and so

(sti)i∈{1,2,...,k} ∈ Ct. The converse is similar. Thus, Ct is the complement of
⋃

I⊂{1,2,...,k} Pt
I .

(3) By the definitions of Pt
I and Ct, and by (1) and (2), it is clear that all the nonempty sets

from Pt
I and Ct form the unique partition of Rk

+ that satisfies (i) and the first statement in (ii). The

second statement in (ii) follows from Lemma A1. In addition, that any ray
{
(sti)i∈{1,2,...,k} : s

t
j ≥ 0

}
in Rk

+ can sequentially intersect at most three sets Pt
I , Ct and Pt

J follows from Theorem 1.

(4) To show the connectedness, we first consider At
I(s

t
k) that is a correspondence from a

nonempty set A ⊂ [0,∞) into Rk
+. We show by contradiction that A is connected, or equiva-

lently, A is an interval. Suppose that A is not an interval. Then, there exist two points s̃tk < stk such

that s̃tk /∈ A and stk ∈ A. Take any point (sti)i∈{1,2,...,k} ∈ At
I(s

t
k). Because δti = 0, by (ii), lowering

sti dose not change any δtj , j = 1, 2, . . . , nt. Using (ii) again, we have ((sti)i∈{1,2,...,k}, s̃
t
k) ∈ At

I(s̃
t
k),

which contradicts to s̃tk /∈ A. (From this argument we can see that A = [0, sA] for some sA ≥ 0.) By

the induction hypothesis, Qt
I(s

t
k) is connected, so At

I(s
t
k) is connected. Also, because the thresholds

Lt
i(qt, s

t
−i) and U t

i (qt, s
t
−i), i = 1, 2, . . . , k− 1, are continuous in stk, we conclude that Pt

I = At
I(A) is

connected. Similar arguments can be applied to P t
I with k ∈ I.

(5) For any I ⊂ {1, 2, . . . , k} with |I| = m ∈ {0, 1, . . . , k}, take any point (sti)i∈{1,2,...,k} ∈ Pt
I . If

k /∈ I, then (sti)i∈{1,2,...,k} ∈ At
I(s

t
k) and so (sti)i∈{1,2,...,k−1} ∈ Qt

I(s
t
k). By the induction hypothesis,

m∗
t (qt, s

t) = Mk−1
t (m; stk) for some increasing mapping Mk−1

t : {0, 1, . . . , k − 1} → {0, 1, . . . , nt}
(by (iii)). If k ∈ I, then (sti)i∈{1,2,...,k} ∈ Bt

I\{k}(s
t
k) and so (sti)i∈{1,2,...,k−1} ∈ Qt

I\{k}(s
t
k). Similarly,

m∗
t (qt, s

t) = Mk−1
t (m− 1; stk). Define

Mt(m; stk) =


Mk−1

t (m; stk) if k /∈ I,

Mk−1
t (m− 1; stk) otherwise,

which is stk-dependent. We next show that Mt(m; stk) is constant on Pt
I so stk can be removed. Take

any two (sti)i∈{1,2,...,k}, (s̃
t
i)i∈{1,2,...,k} ∈ Pt

I . Let s̃
t be defined the same as st except that (sti)i∈{1,2,...,k}

is replaced with (s̃ti)i∈{1,2,...,k}. If k /∈ I, by (ii), δti does not change for i = 1, 2, . . . , nt. This implies

that Mk−1
t (m; stk) = m∗

t (qt, s
t) = m∗

t (qt, s̃
t) = Mk−1

t (m; s̃tk). The same result holds for k ∈ I. So

we let Mt(m) = Mt(m; stk) on Pt
I .

We shall show that Mt(m) is increasing in m. For any I,J ⊂ {1, 2, . . . , k} with |I| ≥ |J |,
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there are four cases: (a) if k /∈ I⋃J , then Mt(|I|) = Mk−1
t (|I|) ≥ Mk−1

t (|J |) = Mt(|J |); (b)
if k ∈ I⋂J , then Mt(|I|) = Mk−1

t (|I| − 1) ≥ Mk−1
t (|J | − 1) = Mt(|J |); (c) if k ∈ J \ I, then

Mt(|I|) = Mk−1
t (|I|) ≥ Mk−1

t (|J |−1) = Mt(|J |); (d) if k ∈ I \J , then Mt(|I|) = Mk−1
t (|I|−1)

and Mt(|J |) = Mk−1
t (|J |). For |I| − 1 ≥ |J |, we still have Mt(|I|) ≥ Mt(|J |). For |I| − 1 < |J |,

or equivalently, |I| = |J |, there must exist an l ∈ {1, 2, . . . , k − 1} such that l /∈ I. By interchanging

values in the lth and kth coordinates of the score vector (sti)i∈{1,2,...,k} ∈ Pt
I , we have δti = 1 for all

i ∈ I⋃ {l} \ {k} and δtj = 0 for all j ∈ I⋃ {l} \ {k}, so the new vector is in Pt
I
⋃
{l}\{k}. Therefore,

Mt(|I|) = Mt(|I
⋃ {l} \ {k}|) = Mk−1

t (|I⋃ {l} \ {k} |) = Mk−1
t (|J |) = Mt(|J |).

The induction is completed. ■

Proof of Theorem 4: (i) Without loss of generality, suppose that all score states are in descending

order, i.e., st = (st[1], s
t
[2], . . . , s

t
[nt]

), t = 1, 2, . . . , T . For each pair i, j ∈ {1, 2, . . . , nt} with i < j, we

first show that Vt(qt, s
t + δei) ≥ Vt(qt, s

t + δej) by induction. The result obviously holds for T + 1.

Suppose Vt+1(qt+1, s
t+1+δei) ≥ Vt+1(qt+1, s

t+1+δej) for each pair i, j ∈ {1, 2, . . . , nt+1} with i < j.

For notational brevity, denote s′ = st + δei and s′′ = st + δej , suppress qt, and define

f(st) = max
1≤mt≤nt

{
mt∑
i=1

st[i] + EVt+1(qt +mt,S
t+1(st, 1))

}
.

Then, by Lemma 3(ii), f(s′) ≥ f(s′′). We shall show that

EVt+1(qt,S
t+1(s′, 0))− EVt+1(qt,S

t+1(s′′, 0)) ≥ 0. (A17)

Expanding the left side of Equation (A17) yields

EVt+1(qt,S
t+1(s′, 0))− EVt+1(qt,S

t+1(s′′, 0))

=(1− p)2
(
E
[
Vt+1(qt,S

t+1(s′, 0))
∣∣W t

i = 0,W t
j = 0

]
− E

[
Vt+1(qt,S

t+1(s′′, 0))
∣∣W t

i = 0,W t
j = 0

])
+ p(1− p)

(
E
[
Vt+1(qt,S

t+1(s′, 0))
∣∣W t

i = 0,W t
j = 1

]
− E

[
Vt+1(qt,S

t+1(s′′, 0))
∣∣W t

i = 0,W t
j = 1

])
− p(1− p)

(
E
[
Vt+1(qt,S

t+1(s′′, 0))
∣∣W t

i = 1,W t
j = 0

]
− E

[
Vt+1(qt,S

t+1(s′, 0))
∣∣W t

i = 1,W t
j = 0

])
+ p2

(
E
[
Vt+1(qt,S

t+1(s′, 0))
∣∣W t

i = 1,W t
j = 1

]
− E

[
Vt+1(qt,S

t+1(s′′, 0))
∣∣W t

i = 1,W t
j = 1

])
≥0,

where the inequality follows because the first term on the left side of the inequality is positive by

the induction hypothesis, the sum of the second and third terms is positive by Lemma 1(i), and

the last term is simply zero. Hence, we have Vt(qt, s
t + δei) ≥ Vt(qt, s

t + δej). The induction is
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complete. We then obtain

Vt(qt, s
t) =Vt(qt, s

t + δei − δei)

≥Vt(qt, s
t + δej − δei).

Next, we prove (ii) and (iii) together. Denote s̃t = st + δej − δei. By Equation (A17),

EVt+1(qt,S
t+1(st, 0)) =EVt+1(qt,S

t+1(st + δei − δei, 0))

≥EVt+1(qt,S
t+1(st + δej − δei, 0))

=EVt+1(qt,S
t+1(s̃t, 0)).

Thus, it suffices to show that f(st) = f(s̃t) for both i, j ∈ Mt(qt, s
t) and i, j /∈ Mt(qt, s

t). To this

end, define (ctj(qt, s
t
−j), ŝ

t, št, s̄t, bt, b̂t, β) similarly as in Theorem 2. By Lemma 3(i), we have

ctj(qt, s
t
−j) =


max

{
min

{
b̂t, s

t
i

}
, cti(qt, ŝ

t
−i)
}

if cti(qt, ŝ
t
−i) = cti(qt, š

t
−i),

cti(qt, ŝ
t
−i)−min

{
cti(qt, ŝ

t
−i), s

t
i

}
+min

{
cti(qt, š

t
−i), s

t
i

}
if cti(qt, ŝ

t
−i) > cti(qt, š

t
−i).

By symmetry, cti(qt, s
t
−i) is defined similarly. By Lemma 2(i), i, j ∈ Mt(qt, s

t) is equivalent to

sti ≥ cti(qt, s
t
−i) and stj ≥ ctj(qt, s

t
−j); and i, j /∈ Mt(qt, s

t) is equivalent to sti < cti(qt, s
t
−i) and

stj < ctj(qt, s
t
−j). We then consider the following two cases.

Case 1. If cti(qt, š
t
−i) = cti(qt, ŝ

t
−i), then sti ≥ cti(qt, s

t
−i) and stj ≥ ctj(qt, s

t
−j) imply that sti > stj ≥

b̂t. By Lemma 3(i),

f(st) =
(
stj −max

{
min

{
b̂t, s

t
i

}
, cti(qt, ŝ

t
−i)
})+

+ f(ŝt)

=stj − b̂t + sti − cti(qt, ŝ
t
−i) + h,

where h is some function independent of stj and sti. Because sti − δ ≥ stj + δ ≥ b̂t, f(s̃
t) = (stj − δ)−

b̂t + (sti + δ)− cti(qt, ŝ
t
−i) + h = f(st).

Similarly, sti < cti(qt, s
t
−i) and stj < ctj(qt, s

t
−j) imply that stj < sti < cti(qt, ŝ

t
−i). By Lemma 3(i),

f(st) =
(
stj −max

{
min

{
b̂t, s

t
i

}
, cti(qt, ŝ

t
−i)
})+

+ f(ŝt)

=h,

which also implies that f(st) = f(s̃t).

Case 2. If cti(qt, ŝ
t
−i) > cti(qt, š

t
−i), then sti ≥ cti(qt, s

t
−i) and stj ≥ ctj(qt, s

t
−j) imply that stj ≥

cti(qt, š
t
−i) if sti > cti(qt, ŝ

t
−i) or stj ≥ cti(qt, š

t
−i) + cti(qt, ŝ

t
−i) − sti if

1
2(c

t
i(qt, š

t
−i) + cti(qt, ŝ

t
−i)) < sti ≤
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cti(qt, ŝ
t
−i). By Lemma 3(i), if sti > cti(qt, ŝ

t
−i),

f(st) =
(
stj −

(
cti(qt, ŝ

t
−i)−min

{
cti(qt, ŝ

t
−i), s

t
i

}
+min

{
cti(qt, š

t
−i), s

t
i

}))+
+ f(ŝt)

=stj − cti(qt, š
t
−i) + sti − cti(qt, ŝ

t
−i) + h.

If 1
2(c

t
i(qt, š

t
−i)+cti(qt, ŝ

t
−i)) ≤ sti < cti(qt, ŝ

t
−i), we also have f(st) = stj−cti(qt, š

t
−i)+sti−cti(qt, ŝ

t
−i)+h.

Therefore, f(st) = f(s̃t).

Similarly, sti < cti(qt, s
t
−i) and stj < ctj(qt, s

t
−j) imply that stj < sti ≤ 1

2(c
t
i(qt, š

t
−i) + cti(qt, ŝ

t
−i)) or

stj < cti(qt, š
t
−i) + cti(qt, ŝ

t
−i) − sti if

1
2(c

t
i(qt, š

t
−i) + cti(qt, ŝ

t
−i)) < sti ≤ cti(qt, ŝ

t
−i). By Lemma 3(i), if

stj < sti ≤ 1
2(c

t
i(qt, š

t
−i) + cti(qt, ŝ

t
−i)),

f(st) =
(
stj −

(
cti(qt, ŝ

t
−i)−min

{
cti(qt, ŝ

t
−i), s

t
i

}
+min

{
cti(qt, š

t
−i), s

t
i

}))+
+ f(ŝt)

=
(
stj −

(
cti(qt, ŝ

t
−i)− sti +min

{
cti(qt, š

t
−i), s

t
i

}))+
+ h

=h.

If 1
2c

t
i(qt, š

t
−i) + cti(qt, ŝ

t
−i) < sti ≤ cti(qt, ŝ

t
−i), we also have f(st) = h. Hence, f(st) = f(s̃t).

Then, (ii) and (iii) follow by Cases 1 and 2. ■

To facilitate the derivation of the proof of Theorem 5, we provide some lemmas.

Lemma A2. For any l ∈ {1, 2, . . . , k + 1}, the following statements hold.

(i) V̂t(qt,y
t) is convex increasing in yt,l.

(ii) ∇
yt,lj

V̂t(qt,y
t) ≤ 1 , j = 1, 2, . . . , nl

t.

(iii) ∇
yt,lj

EV̂t+1(qt +
∑k+1

i=1 mi
t,Y

t+1(yt,mt, at)) ≤ 1− p, j = 1, 2, . . . , nl
t.

Proof of Lemma A2: (i) The proof is by induction. V̂T+1(qT+1,y
T+1) is obviously convex in-

creasing in yT+1,l for any l ∈ {1, 2, . . . , k + 1}. Suppose V̂t+1(qt+1,y
t+1) is convex increasing in

yt+1,l. By the same argument showing that EVt+1(qt,S
t+1(st, 0)) is convex increasing in st in the

proof of Lemma 1(i), EV̂t+1(qt +
∑k+1

i=1 mi
t,Y

t+1(yt,mt, at)) is convex increasing in yt,l.

Next, we show that Ĵt(qt,mt,y
t) is convex increasing in yt,l. This is obvious because both∑ml

t
i=1 y

t,l
[i] and EV̂t+1

(
qt +

∑k+1
i=1 mi

t,Y
t+1(yt,mt, 1)

)
are convex increasing in yt,l, and the sum of

two convex increasing functions is still convex increasing. Note that V̂t(qt,y
t) can be written as

V̂t(qt,y
t) = max

{
EV̂t+1(qt,Y

t+1(yt,0, 0)), Ĵt(qt,0,y
t), Ĵt(qt, (1, 0, . . . , 0),y

t), . . . , Ĵt(qt,nt,y
t)
}
,

which is the maximum of
∏k+1

i=1 (ni
t + 1)+1 convex increasing functions of yt,l. Therefore, V̂t(qt,y

t)

is convex increasing in yt,l.

49



(ii) and (iii) follow by applying the same arguments in the proofs of Lemma 1(ii) and (iii),

respectively. Hence, we omit the proofs for the sake of brevity. ■

Lemma A3. Let s = (s1, s2, . . . , sn) ∈ Rn
+ and s[i] be the ith largest value in s. Denote s[m:n] =

(s[m], s[m+1], . . . , s[n]) for m ≤ n and set s[n+1:n] = 0. Let

f(s) = max
1≤m≤n

{
m∑
i=1

s[i] + gm(s[m+1:n])

}
, (A18)

where gm is any real-valued function of s[m+1:n] that satisfies ∇sigm ≤ 1 for all i ∈ {1, 2, . . . , n}.
Denote m∗(s) as the largest maximizer in (A18) and let M(s) =

{
i ∈ {1, 2, . . . , n} : si ≥ s[m∗(s)]

}
.

Then, for any j ∈ {1, 2, . . . , n}, the set
{
sj ≥ 0 : sj ≥ s[m∗(s)]

}
is nonempty and its minimum is

attainable. Let cj(s−j) = min
{
sj ≥ 0 : sj ≥ s[m∗(s)]

}
. There exists a constant m ∈ {1, 2, . . . , n}

such that m∗(s) = m for all sj ≥ cj(s−j). Moreover, j ∈ M(s) if and only if sj ≥ cj(s−j).

Proof of Lemma A3: For notational brevity, let s̃ = (s1, . . . , sj−1, s̃j , sj+1, . . . , sn) and s′ =

(s1, . . . , sj−1, s
′
j , sj+1, . . . , sn). Let sj = maxi∈{1,2,...,n}\{j} si. Because sj = s[1] ≥ s[m∗(s)], the

set
{
sj ≥ 0 : sj ≥ s[m∗(s)]

}
is nonempty. Define cj(s−j) = inf

{
sj ≥ 0 : sj ≥ s[m∗(s)]

}
and let sc =

(s1, . . . , sj−1, cj(s−j), sj+1, . . . , sn). To show that the infimum can be replaced by the minimum, it

suffices to show that cj(s−j) ≥ sc[m∗(sc)].

Take any ε > 0 and let s̃j = cj(s−j) + ε. We first show that j ∈ M(s̃). By the definition of

cj(s−j), there exists an s′j ∈
{
sj ≥ 0 : sj ≥ s[m∗(s)]

}
such that s′j < cj(s−j) + ε = s̃j . Then, we have

s̃j > s′j ≥ s′[m∗(s′)] and by the optimality of m∗(s′), for any given m ∈ {1, 2, . . . , n},

m∗(s′)∑
i=1

s′[i] + gm∗(s′)(s
′
[m∗(s′)+1:n])−

m∑
i=1

s′[i] − gm(s′[m+1:n]) ≥ 0.

Because ∇sjgm ≤ 1, the left side of the above inequality increases with s′j (by fixing m∗(s′)). Then,

m∗(s′)∑
i=1

s̃[i] + gm∗(s′)(s̃[m∗(s′)+1:n])−
m∑
i=1

s̃[i] − gm(s̃[m+1:n])

≥
m∗(s′)∑
i=1

s′[i] + gm∗(s′)(s
′
[m∗(s′)+1:n])−

m∑
i=1

s′[i] − gm(s′[m+1:n])

≥0. (A19)

Since this holds for all m ∈ {1, 2, . . . , n} and by definition, the second inequality is strict for all

m > m∗(s′), we have m∗(s̃) = m∗(s′) and j ∈ M(s̃). Then, we have s̃j ≥ s̃[m∗(s̃)] ≥ sc[m∗(s̃)], where

the second inequality holds because s̃ only differs from sc in the jth component and s̃j > scj . Because
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m∗(s) is the largest maximizer in (A18), it is clear that m∗(s) is a step function of sj and is right

continuous in sj . Therefore,

cj(s−j) = lim
ε→0+

(cj(s−j) + ε) = lim
ε→0+

s̃j ≥ lim
ε→0+

sc[m∗(s̃)] = sc[m∗(sc)].

Hence, cj(s−j) ≥ sc[m∗(sc)], and the minimum of
{
sj ≥ 0 : sj ≥ s[m∗(s)]

}
is attainable.

Using the same argument as that for Equation (A19), one can verify that the second statement

holds. The third statement follows from the same argument for proving the third statement of

Lemma 2(i). ■

Proof of Theorem 5: (i) The maximal reward when the recruiter stops can be written as

max
0≤mt≤nt

Ĵt(qt,mt,y
t) = max

0≤m1
t≤n1

t

max
0≤ml

t≤nl
t,

2≤l≤k+1

Ĵt(qt,m
t,yt)

= max
0≤m1

t≤n1
t


m1

t∑
i=1

yt,1[i] + gt(m
1
t )

 , (A20)

where gt(m
1
t ) = max

0≤ml
t≤nl

t,2≤l≤k+1

{∑k+1
l=2

∑ml
t

i=1 y
t,l
[i] + EV̂t+1

(
qt +

∑k+1
l=1 ml

t,Y
t+1(yt,mt, 1)

)}
. Note

that with slight modifications, all of the results in Lemmas 2 and 3 can be extended to the constraint

set starting with 0. Then, the properties of (2) also hold true for (A20), and the proofs of Theorems

1, 2, and 4 can be directly applied to prove the same results for applicants on yt,1. Thus, we omit

the proofs for the sake of brevity.

(ii)(1) To prove the first statement, we first consider the maximal reward when the recruiter

stops:

max
0≤mt≤nt

Ĵt(qt,mt,y
t) = max

0≤ml
t≤nl

t


ml

t∑
i=1

yt,l[i] + ht(m
l
t,y

t,l)

 ,

where ht(m
l
t,y

t,l) = max
0≤ml′

t ≤nl′
t ,l

′ ̸=l

{∑
l′ ̸=l

∑ml′
t

i=1 y
t,l′

[i] + EV̂t+1

(
qt +

∑k+1
l′=1m

l′
t ,Y

t+1(yt,mt, 1)
)}

. Let

f̂(qt,y
t,l) = max

1≤ml
t≤nl

t


ml

t∑
i=1

yt,l[i] + ht(m
l
t,y

t,l)

 . (A21)

Denote m̂l
t(qt,y

t,l) as the largest maximizer in (A21).

Because 0 ≤ ∇
yt,lj

ht(m
l
t,y

t,l) ≤ 1−p < 1 (Lemma A2(i) and (iii)), by Lemma A3, we can define

ct,lj (qt,y
t,l
−j) = min

{
yt,lj ≥ 0 : yt,lj ≥ yt,l

[m̂l
t(qt,y

t,l)]

}
. It is clear that f̂(qt,y

t,l) is linearly increasing in

yt,lj with slope 1 if yt,lj ≥ ct,lj (qt,y
t,l
−j) and is convex increasing in yt,lj with slope less than 1 − p if
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yt,lj < ct,lj (qt,y
t,l
−j). Because the maximal reward when the recruiter waits EV̂t+1(qt,Y

t+1(yt,0, 0))

is also convex increasing in yt,lj with slope less than 1− p, letting

U t,l
j = inf

{
yt,lj ≥ ct,lj (qt,y

t,l
−j) : f̂(qt,y

t,l) ≥ max
{
ht(0,y

t,l),EV̂t+1(qt,Y
t+1(yt,0, 0))

}}
,

one can verify that the results hold.

(ii)(2) Without loss of generality, suppose that all score states are in descending or-

der, i.e., yt,l1 ≥ yt,l2 ≥ · · · ≥ yt,l
nl
t
, t = 1, 2, . . . , T , l = 1, 2, . . . , k + 1. For any ε > 0,

any l ∈ {1, 2, . . . , k + 1}, and any pair i, j ∈
{
1, 2, . . . , nl

t

}
with i < j, we first show that

V̂t(qt,y
t′) ≥ V̂t(qt,y

t′′) by induction, where yt′ = (yt,1, . . . ,yt,l−1,yt,l + εei,y
t,l+1, . . . ,yt,k+1) and

yt′′ = (yt,1, . . . ,yt,l−1,yt,l + εej ,y
t,l+1, . . . ,yt,k+1). The result obviously holds for T + 1. Suppose

V̂t+1(qt+1,y
(t+1)′) ≥ V̂t+1(qt+1,y

(t+1)′′). For any given ml
t ∈

{
0, 1, . . . , nl

t

}
, we first show that

Ĵt(qt,mt,y
t′) ≥ Ĵt(qt,mt,y

t′′) through the following two cases.

Case 1. ml
t > 0 and yt,li ≥ yt,l

[ml
t]
. For any yt,lk1 ≥ yt,l

[ml
t]

with k1 ∈
{
1, 2, . . . , nl

t

}
, we have

∇
yt,lk1

Ĵt(qt,mt,y
t) = ∇

yt,lk1

∑ml
t

i=1 y
t,l
[i] = 1. Note that Ĵt(qt,mt,y

t) is convex increasing in yt,l. There-

fore, ∇
yt,lk1

Ĵt(qt,mt,y
t) ≤ 1 for all yt,lk1 ≥ 0. Then, ∇

yt,li
Ĵt(qt,mt,y

t) = 1 ≥ ∇
yt,lj

Ĵt(qt,mt,y
t), which

implies that Ĵt(qt,mt,y
t′) ≥ Ĵt(qt,mt,y

t′′).

Case 2. Either ml
t = 0 or ml

t > 0 and yt,li < yt,l
[ml

t]
. For any yt,lk1 and yt,lk2 in Yt+1,l−1(yt,mt, 1)

with yt,lk1 ≥ yt,lk2 ,

∇
yt,lk1

Ĵt(qt,mt,y
t) =∇

yt,lk1

EV̂t+1

(
qt +

k+1∑
l′=1

ml′
t ,Y

t+1(yt,mt, 1)

)

≥∇
yt,lk2

EV̂t+1

(
qt +

k+1∑
l′=1

ml′
t ,Y

t+1(yt,mt, 1)

)

=∇
yt,lk2

Ĵt(qt,mt,y
t),

where the inequality can be proved by applying the same argument as that for Theorem 4(i) because

the following two required conditions hold: (1) V̂t+1(·,yt+1) is convex increasing in yt+1,l−1 by

Lemma A2(i); and (2) V̂t+1(qt+1,y
(t+1)′) ≥ V̂t+1(qt+1,y

(t+1)′′) by the induction hypothesis. Then,

∇
yt,li

Ĵt(qt,mt,y
t) ≥ ∇

yt,lj
Ĵt(qt,mt,y

t), which implies that Ĵt(qt,mt,y
t′) ≥ Ĵt(qt,mt,y

t′′).

By Cases 1 and 2, Ĵt(qt,mt,y
t′) ≥ Ĵt(qt,mt,y

t′′) holds for all 0 ≤ mt ≤ nt.

Note that EV̂t+1(qt,Y
t+1(yt′ ,0, 0)) ≥ EV̂t+1(qt,Y

t+1(yt′′ ,0, 0)) follows by the same argument

as that for Theorem 4(i). Hence, V̂t(qt,y
t′) ≥ V̂t(qt,y

t′′). The induction is complete.

It then follows that

V̂t(qt,y
t) =V̂t(qt, (y

t,1, . . . ,yt,l−1,yt,l + δei − δei,y
t,l+1, . . . ,yt,k+1))
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≥V̂t(qt, (y
t,1, . . . ,yt,l−1,yt,l + δej − δei,y

t,l+1, . . . ,yt,k+1)).

(iii) We prove this by contradiction. Suppose that applicant i is not hired. The idea is to show

that hiring i and not hiring j (called system 2) leads to a higher expected reward, denoted by R2,

than the expected reward generated by hiring j and not hiring i (called system 1), denoted by R1.

Expanding R2 −R1 yields

R2 −R1 =

yt,l
′

i − yt,lj + EV̂t+1

(
qt +

k+1∑
l=1

ml∗
t , Ỹ

t+1(yt,m∗
t − el′ + el, 1)

)
− EV̂t+1

(
qt +

k+1∑
l=1

ml∗
t ,Y

t+1(yt,m∗
t , 1)

)
,

(A22)

where m∗
t = (m1∗

t ,m2∗
t , . . . ,m

(k+1)∗

t ) is the number of offers to make in system 1, and therefore,

m∗
t − el′ + el is the number of offers to make in system 2. Ỹt+1 has the same element in each

coordinate as Yt+1 except that in the (l − 1)th coordinate,

Ỹt+1,l−1(yt,m∗
t − el′ + el, 1) = Ŷt+1

(
yt,lj , yt,l

[ml∗
t +1]

, yt,l
[ml∗

t +2]
, . . . , yt,l

[nl
t]

)
,

and in the (l′ − 1)th coordinate (if l′ > 1),

Ỹt+1,l′−1(yt,m∗
t − el′ + el, 1) = Ŷt+1(zt,l

′
),

where zt,l
′
is the score vector containing all of the scores in

(
yt,l

′

[m
(l′)∗
t +1]

, yt,l
′

[m
(l′)∗
t +2]

, . . . , yt,l
[nl′

t ]

)
except

yt,l
′

i .

If l′ = 1, then system 2 has one more score yt,l
′

t than system 1 after the recruiter extends offers;

in this case, a simple sample-path argument can show that system 2 has a higher expected reward

starting from period t+1 than system 1. Thus, Equation (A22) implies that R2−R1 ≥ yt,l
′

i −yt,lj ≥ 0.

If l′ > 1, then

EV̂t+1

(
qt +

k+1∑
l=1

ml∗
t , Ỹ

t+1(yt,m∗
t − el′ + el, 1)

)
− EV̂t+1

(
qt +

k+1∑
l=1

ml∗
t ,Y

t+1(yt,m∗
t , 1)

)

≥EV̂t+1

(
qt +

k+1∑
l=1

ml∗
t , Ỹ

t+1(yt,m∗
t − el′ + el, 1)

)
− EV̂t+1

(
qt +

k+1∑
l=1

ml∗
t , Ȳ

t+1(yt,m∗
t − el′ + el, 1)

)

≥yt,lj − yt,l
′

i , (A23)

where Ȳt+1 has the same element in each coordinate as Ỹt+1 except that in the (l−1)th coordinate,

Ȳt+1,l−1(yt,m∗
t − el′ + el, 1) = Ŷt+1

(
yt,l

′

i , yt,l
[ml∗

t +1]
, yt,l

[ml∗
t +2]

, . . . , yt,l
[nl

t]

)
.
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In other words, we move applicant i from the older list, yt,l′ , to the more recent one, yt,l; in this

case, a simple sample-path argument can show that moving an applicant from an older list to a

younger one does not reduce the expected reward. Hence, the first inequality in (A23) holds. The

second equality follows by Lemma A2(ii). Therefore, we also have R2 −R1 ≥ 0. ■
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